Immunogenetics. Chromatin state dynamics during blood formation
- PMID: 25103404
- PMCID: PMC4412442
- DOI: 10.1126/science.1256271
Immunogenetics. Chromatin state dynamics during blood formation
Abstract
Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics; however, technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We identify 48,415 enhancer regions and characterize their dynamics. We find that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers. These enhancer repertoire expansions foreshadow transcriptional programs in differentiated cells. Combining our enhancer catalog with gene expression profiles, we elucidate the transcription factor network controlling chromatin dynamics and lineage specification in hematopoiesis. Together, our results provide a comprehensive model of chromatin dynamics during development.
Copyright © 2014, American Association for the Advancement of Science.
Figures




References
-
- Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12:7–18. - PubMed
-
- Ghisletti S, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32:317–328. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases