Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Sep;281(18):4249-62.
doi: 10.1111/febs.12957. Epub 2014 Sep 11.

Comparing crystal structures of Ca(2+) -ATPase in the presence of different lipids

Affiliations
Free article
Comparative Study

Comparing crystal structures of Ca(2+) -ATPase in the presence of different lipids

Nikolaj D Drachmann et al. FEBS J. 2014 Sep.
Free article

Abstract

The activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) depends strongly on the lipid composition of the surrounding membrane. Yet, structural information on SERCA-lipid interaction is still relatively scarce, and the influence of different lipids on the enzyme is not well understood. We have analyzed SERCA crystal structures in the presence of four different phosphatidylcholine lipids of different lengths and double-bond compositions, and we find three different binding sites for lipid head groups, which are apparently independent of the acyl moiety of the lipids used. By comparison with other available SERCA structures with bound lipids, we find a total of five recurring sites, two of which are specific to certain conformational states of the enzyme, two others are state-independent, and one is a crucial site for crystal formation. Three of the binding sites overlap with or are in close vicinity to known binding sites for various SERCA-specific inhibitors and regulators, e.g. thapsigargin, sarcolipin/phospholamban and cyclopiazonic acid. Whereas the transient sites are amenable to a transient, regulatory influence of lipid molecules, the state-independent sites probably provide a flexible anchoring of the protein in the fluid bilayer.

Keywords: Ca2+-ATPase; P-type ATPase; SERCA; lipid-protein interaction; membrane protein.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources