Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan 1;7(2):89-100.
doi: 10.3233/NPM-1477213.

Monitoring regional tissue oxygen extraction in neonates <1250 g helps identify transfusion thresholds independent of hematocrit

Affiliations
Review

Monitoring regional tissue oxygen extraction in neonates <1250 g helps identify transfusion thresholds independent of hematocrit

J P Mintzer et al. J Neonatal Perinatal Med. .

Abstract

Objective: We sought to characterize the effects of "booster" packed red blood cell transfusions on multisite regional oxygen saturation in very low birth weight neonates during the first postnatal week and to examine the utility of fractional tissue oxygen extraction as an estimate of tissue oxygenation adequacy.

Study design: Data were collected in an observational near-infrared spectroscopy (NIRS) pilot survey of 500-1250 g neonates during the first postnatal week. A before-after analysis of "booster" transfusions, defined as empiric 15 mL/kg transfusion following 10 mL/kg cumulative phlebotomy losses, was conducted upon cardiopulmonary, laboratory, and spectroscopy data.

Result: Ten neonates (gestational age 26 ± 0 wk; birth weight 879 ± 49 g) received 14 transfusions at 3 ± 0 postnatal days. Mean hematocrit increased from 35.2 ± 1.2 to 38.5 ± 1.2 % (P < 0.05) following transfusion; pH, base deficit, lactate, creatinine, and cardiopulmonary parameters were unchanged. Cerebral, renal, and splanchnic tissue oxygenation increased 10, 18, and 16%, with concomitant decreases in calculated oxygen extraction of 27, 30, and 9% (all P < 0.05), consistent with enhanced tissue oxygenation. These findings were not observed in a non-transfused comparison group of nine patients.

Conclusion: "Booster" transfusions improved indices of regional tissue oxygenation while no departures were observed in conventional cardiovascular assessments. We speculate that NIRS-derived oxygenation parameters can provide an objective, graded, and continuous estimate of oxygen delivery-consumption balance not evident using standard monitoring techniques.

Keywords: Oxygen extraction; near-infrared spectroscopy; oxygen delivery; red cell mass; “booster” transfusion.

PubMed Disclaimer

MeSH terms

LinkOut - more resources