Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989:39:97-152.
doi: 10.1007/BFb0051953.

Synthesis and application of water-soluble macromolecular derivatives of the redox coenzymes NAD(H), NADP(H) and FAD

Review

Synthesis and application of water-soluble macromolecular derivatives of the redox coenzymes NAD(H), NADP(H) and FAD

A F Bückmann et al. Adv Biochem Eng Biotechnol. 1989.

Abstract

During the past 15 years, the development of strategies to apply the catalytic potential of redox coenzyme-requiring enzymes has been a subject of intensive study; the main purpose of which has been to cut the cost of coenzyme to an economically acceptable level. One approach has been the utilization of isolated coenzyme-dependent enzyme systems with simultaneous enzymatic coenzyme regeneration (recycling). This has been used in conjugation with ultrafiltration reactor technology (enzyme membrane reactor), with coenzyme concentration being kept at a catalytic level. The concept implies confinement (immobilization) and practically 100% retention of both enzymes and coenzymes being dissolved in homogeneous solution within the reactor space that is closed off by an ultrafiltration membrane through which low-molecular-weight reactants (substrates and products) can freely pass. Since the problem of retaining nearly 100% native coenzymes of relatively low molecular weight by ultrafiltration membranes has not been satisfactorily solved, active macromolecular coenzyme derivatives are required. In this review, the syntheses, properties and merits of water-soluble macromolecular derivatives of NAD(H), NADP(H) and FAD are considered with respect to their biotechnological application.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources