Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;74(14):1371-8.
doi: 10.1002/pros.22849. Epub 2014 Aug 11.

Mutational landscape of candidate genes in familial prostate cancer

Affiliations

Mutational landscape of candidate genes in familial prostate cancer

Anna M Johnson et al. Prostate. 2014 Oct.

Abstract

Background: Family history is a major risk factor for prostate cancer (PCa), suggesting a genetic component to the disease. However, traditional linkage and association studies have failed to fully elucidate the underlying genetic basis of familial PCa.

Methods: Here, we use a candidate gene approach to identify potential PCa susceptibility variants in whole exome sequencing data from familial PCa cases. Six hundred ninety-seven candidate genes were identified based on function, location near a known chromosome 17 linkage signal, and/or previous association with prostate or other cancers. Single nucleotide variants (SNVs) in these candidate genes were identified in whole exome sequence data from 33 PCa cases from 11 multiplex PCa families (3 cases/family).

Results: Overall, 4,856 candidate gene SNVs were identified, including 1,052 missense and 10 nonsense variants. Twenty missense variants were shared by all three family members in each family in which they were observed. Additionally, 15 missense variants were shared by two of three family members and predicted to be deleterious by five different algorithms. Four missense variants, BLM Gln123Arg, PARP2 Arg283Gln, LRCC46 Ala295Thr and KIF2B Pro91Leu, and one nonsense variant, CYP3A43 Arg441Ter, showed complete co-segregation with PCa status. Twelve additional variants displayed partial co-segregation with PCa.

Conclusions: Forty-three nonsense and shared, missense variants were identified in our candidate genes. Further research is needed to determine the contribution of these variants to PCa susceptibility.

Keywords: exome sequencing; familial cancer; susceptibility.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pedigrees of families with complete co-segregation of a candidate gene variant and PCa status. Red arrows indicated individuals with exome sequencing data. Plus signs indicate carriers of the variant allele, and minus signs indicate individuals who are wild-type for the specified variant

References

    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: A Cancer Journal for Clinicians. 2013;63(1):11–30. - PubMed
    1. Langeberg WJ, Isaacs WB, Stanford JL. Genetic etiology of hereditary prostate cancer. Front Biosci. 2007;12:4101–4110. - PubMed
    1. Kim ST, Cheng Y, Hsu FC, Jin T, Kader AK, Zheng SL, Isaacs WB, Xu J, Sun J. Prostate cancer risk-associated variants reported from genome-wide association studies: meta-analysis and their contribution to genetic Variation. Prostate. 2010;70(16):1729–1738. - PMC - PubMed
    1. Kote-Jarai Z, Olama AA, Giles GG, Severi G, Schleutker J, Weischer M, Campa D, Riboli E, Key T, Gronberg H, Hunter DJ, Kraft P, Thun MJ, Ingles S, Chanock S, Albanes D, Hayes RB, Neal DE, Hamdy FC, Donovan JL, Pharoah P, Schumacher F, Henderson BE, Stanford JL, Ostrander EA, Sorensen KD, Dork T, Andriole G, Dickinson JL, Cybulski C, Lubinski J, Spurdle A, Clements JA, Chambers S, Aitken J, Gardiner RA, Thibodeau SN, Schaid D, John EM, Maier C, Vogel W, Cooney KA, Park JY, Cannon-Albright L, Brenner H, Habuchi T, Zhang HW, Lu YJ, Kaneva R, Muir K, Benlloch S, Leongamornlert DA, Saunders EJ, Tymrakiewicz M, Mahmud N, Guy M, O'Brien LT, Wilkinson RA, Hall AL, Sawyer EJ, Dadaev T, Morrison J, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Lophatonanon A, Southey MC, Hopper JL, English DR, Wahlfors T, Tammela TL, Klarskov P, Nordestgaard BG, Roder MA, Tybjaerg-Hansen A, Bojesen SE, Travis R, Canzian F, Kaaks R, Wiklund F, Aly M, Lindstrom S, Diver WR, Gapstur S, Stern MC, Corral R, Virtamo J, Cox A, Haiman CA, Le Marchand L, Fitzgerald L, Kolb S, Kwon EM, Karyadi DM, Orntoft TF, Borre M, Meyer A, Serth J, Yeager M, Berndt SI, Marthick JR, Patterson B, Wokolorczyk D, Batra J, Lose F, McDonnell SK, Joshi AD, Shahabi A, Rinckleb AE, Ray A, Sellers TA, Lin HY, Stephenson RA, Farnham J, Muller H, Rothenbacher D, Tsuchiya N, Narita S, Cao GW, Slavov C, Mitev V, Easton DF, Eeles RA. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet. 2011;43(8):785–791. - PMC - PubMed
    1. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y, Bizon C, Yan G, Gielzak M, Partin AW, Shanmugam V, Izatt T, Sinari S, Craig DW, Zheng SL, Walsh PC, Montie JE, Xu J, Carpten JD, Isaacs WB, Cooney KA. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366(2):141–149. - PMC - PubMed

Publication types

Substances