Association between noninvasive fibrosis markers and cardio-vascular organ damage among adults with hepatic steatosis
- PMID: 25111713
- PMCID: PMC4128729
- DOI: 10.1371/journal.pone.0104941
Association between noninvasive fibrosis markers and cardio-vascular organ damage among adults with hepatic steatosis
Abstract
Evidence suggests that advanced fibrosis, as determined by the noninvasive NAFLD fibrosis score (NFS), is a predictor of cardiovascular mortality in individuals with ultrasonography-diagnosed NAFLD. Whether the severity of histology (i.e., fibrosis stage) is associated with more pronounced cardiovascular organ damage is unsettled. In this study, we analyzed the clinical utility of NFS in assessing increased carotid intima-media thickness (cIMT), and left ventricular mass index (LVMI). In this cross-sectional study NFS, cIMT and LVMI were assessed in 400 individuals with ultrasonography-diagnosed steatosis. As compared with individuals at low probability of liver fibrosis, individuals both at high and at intermediate probability of fibrosis showed an unfavorable cardio-metabolic risk profile having significantly higher values of waist circumference, insulin resistance, high sensitivity C-reactive protein (hsCRP), fibrinogen, cIMT, and LVMI, and lower insulin-like growth factor-1 (IGF-1) levels. The differences in cIMT and LVMI remained significant after adjustment for smoking and metabolic syndrome. In a logistic regression model adjusted for age, gender, smoking, and diagnosis of metabolic syndrome, individuals at high probability of fibrosis had a 3.9-fold increased risk of vascular atherosclerosis, defined as cIMT>0.9 mm, (OR 3.95, 95% CI 1.12-13.87) as compared with individuals at low probability of fibrosis. Individuals at high probability of fibrosis had a 3.5-fold increased risk of left ventricular hypertrophy (LVH) (OR 3.55, 95% CI 1.22-10.34) as compared with individuals at low probability of fibrosis. In conclusion, advanced fibrosis, determined by noninvasive fibrosis markers, is associated with cardiovascular organ damage independent of other known factors.
Conflict of interest statement
References
-
- Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, et al. (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40: 1387–95. - PubMed
-
- Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, et al. (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42: 44–52. - PubMed
-
- Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346: 1221–1231. - PubMed
-
- Petta S, Muratore C, Craxi A (2009) Nonalcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 41: 615–25. - PubMed
-
- Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, et al. (2002) Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
