Identification and analysis of ADP-ribosylated proteins
- PMID: 25113886
- DOI: 10.1007/82_2014_424
Identification and analysis of ADP-ribosylated proteins
Abstract
The analysis of ADP-ribosylated proteins is a challenging task, on the one hand because of the diversity of the target proteins and the modification sites, on the other hand because of the particular problems posed by the analysis of ADP-ribosylated peptides. ADP-ribosylated proteins can be detected in in vitro experiments after the incorporation of radioactively labeled or chemically modified ADP-ribose. Endogenously ADP-ribosylated proteins may be detected and enriched by antibodies directed against the ADP-ribosyl moiety or by ADP-ribosyl binding macro domains. The determination of the exact attachment site of the modification, which is a prerequisite for the understanding of the specificity of the various ADP-ribosyl transferases and the structural consequences of ADP-ribosylation, necessitates the proteolytic cleavage of the proteins. The resulting peptides can afterwards be enriched either by IMAC (using the affinity of the pyrophosphate group for heavy metal ions) or by immobilized boronic acid beads (using the affinity of the vicinal ribose hydroxy groups for boronic acid). The identification of the modified peptides usually requires tandem mass spectrometric measurements. Problems that hamper the mass spectrometric analysis by collision-induced decay (CID) can be circumvented either by the application of different fragmentation techniques (electron transfer or electron capture dissociation; ETD or ECD) or by enzymatic cleavage of the ADP-ribosyl group to ribosyl-phosphate.
Similar articles
-
Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry.J Mass Spectrom. 2010 Jun;45(6):664-9. doi: 10.1002/jms.1758. J Mass Spectrom. 2010. PMID: 20527035
-
Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteomewide ADP-Ribose Acceptor Sites.Anal Chem. 2017 Feb 7;89(3):1523-1530. doi: 10.1021/acs.analchem.6b03365. Epub 2017 Jan 13. Anal Chem. 2017. PMID: 28035797
-
Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites.Front Biosci (Landmark Ed). 2014 Jun 1;19(7):1041-56. doi: 10.2741/4266. Front Biosci (Landmark Ed). 2014. PMID: 24896335 Review.
-
ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method.Methods Mol Biol. 2017;1608:79-93. doi: 10.1007/978-1-4939-6993-7_7. Methods Mol Biol. 2017. PMID: 28695505 Free PMC article.
-
ADP-ribosylation, a mechanism regulating nitrogenase activity.FEBS J. 2013 Aug;280(15):3484-90. doi: 10.1111/febs.12279. Epub 2013 May 9. FEBS J. 2013. PMID: 23574616 Review.
Cited by
-
Posttranslational Protein Modifications in Plant Metabolism.Plant Physiol. 2015 Nov;169(3):1469-87. doi: 10.1104/pp.15.01378. Epub 2015 Sep 3. Plant Physiol. 2015. PMID: 26338952 Free PMC article.
-
Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.Mass Spectrom Rev. 2024 Mar-Apr;43(2):289-326. doi: 10.1002/mas.21811. Epub 2022 Sep 27. Mass Spectrom Rev. 2024. PMID: 36165040 Free PMC article. Review.
-
Comprehensive ADP-ribosylome analysis identifies tyrosine as an ADP-ribose acceptor site.EMBO Rep. 2018 Aug;19(8):e45310. doi: 10.15252/embr.201745310. Epub 2018 Jun 28. EMBO Rep. 2018. PMID: 29954836 Free PMC article.
-
A macrodomain-linked immunosorbent assay (MLISA) for mono-ADP-ribosyltransferases.Anal Biochem. 2018 Feb 15;543:132-139. doi: 10.1016/j.ab.2017.12.019. Epub 2017 Dec 13. Anal Biochem. 2018. PMID: 29247608 Free PMC article.
-
Intracellular Mono-ADP-Ribosylation in Signaling and Disease.Cells. 2015 Sep 25;4(4):569-95. doi: 10.3390/cells4040569. Cells. 2015. PMID: 26426055 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources