Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;103(10):3205-16.
doi: 10.1002/jps.24116. Epub 2014 Aug 12.

Dual drug release from core-shell nanoparticles with distinct release profiles

Affiliations

Dual drug release from core-shell nanoparticles with distinct release profiles

Yang Cao et al. J Pharm Sci. 2014 Oct.

Abstract

Multiple drug combination is a promising strategy in biomedical fields, such as cancer chemotherapy and tissue engineering. With the aim of codelivering multiple drugs with different characteristics, immiscible and miscible liquids were utilized to fabricate nanoparticles of polyvinylpyrrolidone/poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone)/PLGA with distinct core-shell structure by coaxial electrospray. Each kind of nanoparticles can encapsulate the hydrophilic rhodamine B and hydrophobic naproxen in one single step efficiently. Encapsulation efficiency was over 85%. The different release patterns of dual-drug encapsulated were demonstrated when the drug location swapped, attributing to the distinct core-shell structures of nanoparticles and the interaction between drug molecules and carrier polymers. Meanwhile, the release profiles of encapsulated drugs with different loading amount were investigated as well. Dual drug release profiles from nanoparticles were affected by the unique architecture of nanocarriers (porous and core-shell structure), physical properties of polymers, and drugs. In addition, polymer-drug and drug-drug molecular interaction may take an important role in drug release behaviors. The results suggested that the distinct release kinetics of multiple drugs fabricated by coaxial electrospray can be obtained and tuned to fulfill the clinical requirement in combination therapy.

Keywords: Biomaterials; Controlled release/delivery; Nanoparticles; Nanotechnology; Polymeric drug carrier; core-shell nanoparticles; distinct release profiles; dual-drug encapsulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources