Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Nov;93(11 Suppl 3):S122-31.
doi: 10.1097/PHM.0000000000000152.

Stem cell therapy for intervertebral disk regeneration

Affiliations
Review

Stem cell therapy for intervertebral disk regeneration

Shanmiao Gou et al. Am J Phys Med Rehabil. 2014 Nov.

Abstract

Intervertebral disk degeneration has been considered an irreversible process characterized by a decrease in cell viability, attenuation of proteoglycan and type II collagen synthesis, and dehydration of nucleus pulposus. Stem cell therapy specifically addresses the degenerative process and offers a potentially effective treatment modality. Current preclinical studies show that mesenchymal stem cells have the capacity to repair degenerative disks by differentiation toward chondrocyte-like cells, which produce proteoglycans and type II collagen. There has been evidence that mesenchymal stem cell transplantation into the intervertebral disk increases the intradiskal magnetic resonance imaging T2 signal intensity, increases the disk height, and decreases the degenerative grade in animal models. Appropriate selection of cell carriers/matrix is important because it may prevent cell leakage into the spinal canal and provide an environment that facilitates cell proliferation and differentiation. Although human cell therapy trials for degenerative disk disease are on the horizon, potential issues might arise. The authors hereby review the current state of regenerative cell therapy in degenerative disk disease, with emphasis in cell source, techniques for cellular expansion, induction, transplantation, potential benefit, and risks of the use of this novel medical armamentarium in the treatment of degenerative disk disease.

PubMed Disclaimer

MeSH terms

LinkOut - more resources