Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 13:13:315.
doi: 10.1186/1475-2875-13-315.

Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility

Affiliations

Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility

Arthur M Talman et al. Malar J. .

Abstract

Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown.

Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163.

Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.

Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

PubMed Disclaimer

Figures

Figure 1
Figure 1
PbHT localizes to the male gamete surface. The P. berghei HT-myc line was labelled with an α-tubulin antibody (red), an anti-c-myc antibody (green) and stained with DAPI (blue). (A) 3-D projection of a male gametocyte in the process of exflagellation. Scale bar 5 μm. (B) Enlarged inset from (A) displaying the distribution PbHT-myc and α-tubulin in sequential Z stacks (0.1 μm). Scale bar 1 μm. PbHT-myc is abundant and localized to the periphery of male gametes.
Figure 2
Figure 2
Male motility is suppressed by glycolytic inhibitors. The proportion of male gametes exhibiting each class of flagellar beat was determined in the presence of the glucose analogues 2-deoxy-D-glucose (not processed after phosphorylation by hexokinase) (A) and CM3361 (competitive inhibitor of glucose transport) (B) in the presence formula image or absence formula image of excess glucose (10 mM). (C, D) Patterns of motility were further categorized into fast beat, slow beat and immotile. (E) Values of flagella wave frequencies were measured with different concentrations of CM3361. Frequencies of waves were not altered by the presence of the inhibitor.
Figure 3
Figure 3
A model of the Plasmodium flagellum and proteins comprising it. (A) A cross section of a typical axoneme is shown (as observed in Plasmodium and other eukaryotic species). Proteins that were present in the male gametocyte (MGY) or male gamete (MG) proteomes are shown and their sequence count is given. It is noteworthy that the sequence counts originate from different datasets from distinct experimental set-ups [10]; they are thus indicative of presence of these proteins in the two datasets but are not meant as quantitative information on protein abundance in these cells types. Typical components of an axoneme are clearly identified. (B) Longitudinal section of an axoneme and basal body and the proteins identified in the male proteomes that are putatively associated with these structures. (C) Proteins that were identified in the male gamete proteomic analysis but that could not be attributed to a specific compartment of the flagellum, these proteins possess bio-informatic prediction that suggests they could play a role in flagellar biology. CPP = conserved Plasmodium protein.

Similar articles

Cited by

References

    1. Sinden RE, Canning EU, Bray RS, Smalley ME. Gametocyte and gamete development in Plasmodium falciparum. Proc R Soc Lond B Biol Sci. 1978;201:375–399. doi: 10.1098/rspb.1978.0051. - DOI - PubMed
    1. Sinden RE, Croll NA. Cytology and kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis. Parasitology. 1975;70:53–65. doi: 10.1017/S0031182000048861. - DOI - PubMed
    1. Briggs LJ, Davidge JA, Wickstead B, Ginger ML, Gull K. More than one way to build a flagellum: comparative genomics of parasitic protozoa. Curr Biol. 2004;14:R611–R612. doi: 10.1016/j.cub.2004.07.041. - DOI - PubMed
    1. Wickstead B, Gull K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic. 2007;8:1708–1721. doi: 10.1111/j.1600-0854.2007.00646.x. - DOI - PMC - PubMed
    1. Gibbons BH, Gibbons IR. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J Cell Biol. 1972;54:75–97. doi: 10.1083/jcb.54.1.75. - DOI - PMC - PubMed

Publication types