Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;35(34):9290-301.
doi: 10.1016/j.biomaterials.2014.07.051. Epub 2014 Aug 13.

The influence of age on adaptive bone formation and bone resorption

Affiliations

The influence of age on adaptive bone formation and bone resorption

Annette I Birkhold et al. Biomaterials. 2014 Nov.

Abstract

Bone is a tissue with enormous adaptive capacity, balancing resorption and formation processes. It is known that mechanical loading shifts this balance towards an increased formation, leading to enhanced bone mass and mechanical performance. What is not known is how this adaptive response to mechanical loading changes with age. Using dynamic micro-tomography, we show that structural adaptive changes of trabecular bone within the tibia of living mice subjected to two weeks of in vivo cyclic loading are altered by aging. Comparisons of 10, 26 and 78 weeks old animals reveal that the adaptive capacity diminishes. Strikingly, adaptation was asymmetric in that loading increases formation more than it reduces resorption. This asymmetry further shifts the (re)modeling balance towards a net bone loss with age. Loading results in a major increase in the surface area of mineralizing bone. Interestingly, the resorption thickness is independent of loading in trabecular bone in all age groups. This data suggests that during youth, mechanical stimulation induces the recruitment of bone modeling cells whereas in old age, only bone forming cells are affected. These findings provide mechanistic insights into the processes that guide skeletal aging in mice as well as in other mammals.

Keywords: Adaptation; Aging; Bone remodeling; Image analysis; Microstructure.

PubMed Disclaimer

Publication types

LinkOut - more resources