Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 15;127(Pt 20):4443-56.
doi: 10.1242/jcs.152975. Epub 2014 Aug 15.

Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage

Affiliations

Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage

Adva Aizer et al. J Cell Sci. .

Abstract

The 5'-to-3' mRNA degradation machinery localizes to cytoplasmic processing bodies (P-bodies), which are non-membranous structures found in all eukaryotes. Although P-body function has been intensively studied in yeast, less is known about their role in mammalian cells, such as whether P-body enzymes are actively engaged in mRNA degradation or whether P-bodies serve as mRNA storage depots, particularly during cellular stress. We examined the fate of mammalian mRNAs in P-bodies during translational stress, and show that mRNAs accumulate within P-bodies during amino acid starvation. The 5' and 3' ends of the transcripts residing in P-bodies could be identified, but poly(A) tails were not detected. Using the MS2 mRNA-tagging system for mRNA visualization in living cells, we found that a stationary mRNA population formed in P-bodies during translational stress, which cleared gradually after the stress was relieved. Dcp2-knockdown experiments showed that there is constant degradation of part of the P-body-associated mRNA population. This analysis demonstrates the dual role of P-bodies as decay sites and storage areas under regular and stress conditions.

Keywords: P-body; RNA dynamics; RNA quantification.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources