Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 10;6(17):15403-11.
doi: 10.1021/am503942x. Epub 2014 Aug 22.

Temperature-dependent wear mechanisms for magnetron-sputtered AlTiTaN hard coatings

Affiliations

Temperature-dependent wear mechanisms for magnetron-sputtered AlTiTaN hard coatings

Vishal Khetan et al. ACS Appl Mater Interfaces. .

Abstract

AlTiTaN coatings have been demonstrated to have high thermal stability at temperatures up to 900 °C. It has been speculated that the high oxidation resistance promotes an improved wear resistance, specifically for dry machining applications. This work reports on the influence of temperature up to 900 °C on the wear mechanisms of AlTiTaN hard coatings. DC magnetron-sputtered coatings were obtained from an Al(46)Ti(42)Ta(12) target, keeping the substrate bias at -100 V and the substrate temperature at 265 °C. The coatings exhibited a single-phase face-centered cubic AlTiTaN structure. The dry sliding tests revealed predominant abrasion and tribo-oxidation as wear mechanisms, depending on the wear debris formed. At room temperature, abrasion leading to surface polishing was observed. At 700 and 800 °C, slow tribo-oxidation and an amorphous oxide formed reduced the wear rate of the coating compared to room temperature. Further, an increase in temperature to 900 °C increased the wear rate significantly due to fast tribo-oxidation accompanied by grooving. The friction coefficient was found to decrease with temperature increasing from 700 to 900 °C due to the formation of oxide scales, which reduce adhesion of asperity contacts. A relationship between the oxidation and wear mechanisms was established using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, surface profilometry, confocal microscopy, and dynamic secondary ion mass spectrometry.

Keywords: TiAlN; friction; hard coating; oxidation; wear mechanism.

PubMed Disclaimer

Publication types

LinkOut - more resources