Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug 1:8:230.
doi: 10.3389/fnins.2014.00230. eCollection 2014.

How may the basal ganglia contribute to auditory categorization and speech perception?

Affiliations
Review

How may the basal ganglia contribute to auditory categorization and speech perception?

Sung-Joo Lim et al. Front Neurosci. .

Abstract

Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood.

Keywords: basal ganglia; categorization; perceptual learning; plasticity; speech category learning; speech perception.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Illustration of the anatomy of the basal ganglia. The globus pallidus lies inside the putamen. The thalamus is located underneath the basal ganglia, in the medial position of the brain.
Figure 2
Figure 2
The direct pathway circuitry of the basal ganglia via the dorsal striatum. SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; GPi, globus pallidus, internal portion.

References

    1. Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 10.1146/annurev.ne.09.030186.002041 - DOI - PubMed
    1. Amalric M., Koob G. F. (1993). Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain Res. 99, 209–226 10.1016/S0079-6123(08)61348-5 - DOI - PubMed
    1. Aoyama K., Flege J. E., Guion S. G., Akahane-Yamada R., Yamada T. (2004). Perceived phonetic dissimilarity and L2 speech learning: the case of Japanese /r/ and English /l/ and /r/. J. Phon. 32, 233–250 10.1016/S0095-4470(03)00036-6 - DOI
    1. Arnauld E., Jeantet Y., Arsaut J., Demotes-Mainard J. (1996). Involvement of the caudal striatum in auditory processing: c-fos response to cortical application of picrotoxin and to auditory stimulation. Mol. Brain Res. 41, 27–35 10.1016/0169-328X(96)00063-0 - DOI - PubMed
    1. Ashby F. G., Alfonso-Reese L. A., Turken A. U., Waldron E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychol. Rev. 105, 442–481 10.1037/0033-295X.105.3.442 - DOI - PubMed

LinkOut - more resources