Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;86(5):522-35.
doi: 10.1124/mol.114.094284. Epub 2014 Aug 19.

Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL)

Affiliations

Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL)

Juha R Savinainen et al. Mol Pharmacol. 2014 Nov.

Abstract

The primary route of inactivation of the endocannabinoid 2-arachidonoylglycerol in the central nervous system is through enzymatic hydrolysis, mainly carried out by monoacylglycerol lipase (MAGL), along with a small contribution by the α/β-hydrolase domain (ABHD) proteins ABHD6 and ABHD12. Recent methodological progress allowing kinetic monitoring of glycerol liberation has facilitated substrate profiling of the human endocannabinoid hydrolases, and these studies have revealed that the three enzymes have distinct monoacylglycerol substrate and isomer preferences. Here, we have extended this substrate profiling to cover four prostaglandin glycerol esters, namely, 15-deoxy-Δ(12,14)-prostaglandin J2-2-glycerol (15d-PGJ2-G), PGD2-G, PGE2-G, and PGF2 α-G. We found that the three enzymes hydrolyzed the tested substrates, albeit with distinct rates and preferences. Although human ABHD12 (hABHD12) showed only marginal activity toward PGE2-G, hABHD6 preferentially hydrolyzed PGD2-G, and human MAGL (hMAGL) robustly hydrolyzed all four. This was particularly intriguing for MAGL activity toward 15d-PGJ2-G whose hydrolysis rate rivaled that of the best monoacylglycerol substrates. Molecular modeling studies combined with kinetic analysis supported favorable interaction with the hMAGL active site. Long and short MAGL isoforms shared a similar substrate profile, and hMAGL hydrolyzed 15d-PGJ2-G also in living cells. The ability of 15d-PGJ2-G to activate the canonical nuclear factor erythroid 2-related factor (Nrf2) signaling pathway used by 15d-PGJ2 was assessed, and these studies revealed for the first time that 15d-PGJ2 and 15d-PGJ2-G similarly activated Nrf2 signaling as well as transcription of target genes of this pathway. Our study challenges previous claims regarding the ability of MAGL to catalyze PG-G hydrolysis and extend the MAGL substrate profile beyond the classic monoacylglycerols.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources