Chromophore supply rate-limits mammalian photoreceptor dark adaptation
- PMID: 25143602
- PMCID: PMC4138333
- DOI: 10.1523/JNEUROSCI.1245-14.2014
Chromophore supply rate-limits mammalian photoreceptor dark adaptation
Abstract
Efficient regeneration of visual pigment following its destruction by light is critical for the function of mammalian photoreceptors. Here, we show that misexpression of a subset of cone genes in the rd7 mouse hybrid rods enables them to access the normally cone-specific retina visual cycle. The rapid supply of chromophore by the retina visual cycle dramatically accelerated the mouse rod dark adaptation. At the same time, the competition between rods and cones for retina-derived chromophore slowed cone dark adaptation, indicating that the cone specificity of the retina visual cycle is key for rapid cone dark adaptation. Our findings demonstrate that mammalian photoreceptor dark adaptation is dominated by the supply of chromophore. Misexpression of cone genes in rods may represent a novel approach to treating visual disorders associated with mutations of visual cycle proteins or with reduced retinal pigment epithelium function due to aging.
Keywords: dark adaptation; photoreceptors; pigment regeneration; retina; retinol dehydrogenase; visual cycle.
Copyright © 2014 the authors 0270-6474/14/3411212-10$15.00/0.
Figures







Similar articles
-
Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.J Physiol. 2015 Nov 15;593(22):4923-41. doi: 10.1113/JP271285. Epub 2015 Oct 18. J Physiol. 2015. PMID: 26350353 Free PMC article.
-
cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.J Physiol. 2016 Nov 15;594(22):6753-6765. doi: 10.1113/JP272831. Epub 2016 Aug 2. J Physiol. 2016. PMID: 27385534 Free PMC article.
-
Intra-retinal visual cycle required for rapid and complete cone dark adaptation.Nat Neurosci. 2009 Mar;12(3):295-302. doi: 10.1038/nn.2258. Epub 2009 Feb 1. Nat Neurosci. 2009. PMID: 19182795 Free PMC article.
-
The cone-specific visual cycle.Prog Retin Eye Res. 2011 Mar;30(2):115-28. doi: 10.1016/j.preteyeres.2010.11.001. Epub 2010 Nov 25. Prog Retin Eye Res. 2011. PMID: 21111842 Free PMC article. Review.
-
The Retina-Based Visual Cycle.Annu Rev Vis Sci. 2024 Sep;10(1):293-321. doi: 10.1146/annurev-vision-100820-083937. Epub 2024 Sep 2. Annu Rev Vis Sci. 2024. PMID: 38724080 Review.
Cited by
-
The role of retinol dehydrogenase 10 in the cone visual cycle.Sci Rep. 2017 May 24;7(1):2390. doi: 10.1038/s41598-017-02549-8. Sci Rep. 2017. PMID: 28539612 Free PMC article.
-
The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility.J Biol Chem. 2016 Apr 15;291(16):8721-34. doi: 10.1074/jbc.M115.696138. Epub 2016 Feb 18. J Biol Chem. 2016. PMID: 26893377 Free PMC article.
-
The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.Vis Neurosci. 2017 Jan;34:E004. doi: 10.1017/S0952523817000013. Vis Neurosci. 2017. PMID: 28359344 Free PMC article.
-
Retinoid Synthesis Regulation by Retinal Cells in Health and Disease.Cells. 2024 May 18;13(10):871. doi: 10.3390/cells13100871. Cells. 2024. PMID: 38786093 Free PMC article.
-
Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells.Neuron. 2019 Jun 19;102(6):1172-1183.e5. doi: 10.1016/j.neuron.2019.04.004. Epub 2019 May 2. Neuron. 2019. PMID: 31056353 Free PMC article.
References
-
- Akhmedov NB, Piriev NI, Chang B, Rapoport AL, Hawes NL, Nishina PM, Nusinowitz S, Heckenlively JR, Roderick TH, Kozak CA, Danciger M, Davisson MT, Farber DB. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci U S A. 2000;97:5551–5556. doi: 10.1073/pnas.97.10.5551. - DOI - PMC - PubMed
-
- Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicoló M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, Pugh EN, Jr, Makino CL, Lem J. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha-subunit. Proc Natl Acad Sci U S A. 2000;97:13913–13918. doi: 10.1073/pnas.250478897. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- EY002687/EY/NEI NIH HHS/United States
- R01 EY018826/EY/NEI NIH HHS/United States
- R01 EY019312/EY/NEI NIH HHS/United States
- HG006346/HG/NHGRI NIH HHS/United States
- EY18826/EY/NEI NIH HHS/United States
- R01 EY001157/EY/NEI NIH HHS/United States
- EY021126/EY/NEI NIH HHS/United States
- R21 HG006346/HG/NHGRI NIH HHS/United States
- EY01157/EY/NEI NIH HHS/United States
- R24 EY021126/EY/NEI NIH HHS/United States
- P30 EY002687/EY/NEI NIH HHS/United States
- HG006790/HG/NHGRI NIH HHS/United States
- EY019312/EY/NEI NIH HHS/United States
- R01 HG006790/HG/NHGRI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases