Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2014 Aug 21;9(8):e105690.
doi: 10.1371/journal.pone.0105690. eCollection 2014.

Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children

Affiliations
Clinical Trial

Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children

Melissa D Conrad et al. PLoS One. .

Abstract

The emergence of resistance to artemisinin derivatives in Southeast Asia, manifested as delayed clearance of Plasmodium falciparum following treatment with artemisinins, is a major concern. Recently, the artemisinin resistance phenotype was attributed to mutations in portions of a P. falciparum gene (PF3D7_1343700) encoding kelch (K13) propeller domains, providing a molecular marker to monitor the spread of resistance. The P. falciparum cysteine protease falcipain-2 (FP2; PF3D7_1115700) has been shown to contribute to artemisinin action, as hemoglobin degradation is required for potent drug activity, and a stop mutation in the FP2 gene was identified in parasites selected for artemisinin resistance. Although delayed parasite clearance after artemisinin-based combination therapy (ACT) has not yet been noted in Uganda and ACTs remain highly efficacious, characterizing the diversity of these genes is important to assess the potential for resistance selection and to provide a baseline for future surveillance. We therefore sequenced the K13-propeller domain and FP2 gene in P. falciparum isolates from children previously treated with ACT in Uganda, including samples from 2006-7 (n = 49) and from 2010-12 (n = 175). Using 3D7 as the reference genome, we identified 5 non-synonymous polymorphisms in the K13-propeller domain (133 isolates) and 35 in FP2 (160 isolates); these did not include the polymorphisms recently associated with resistance after in vitro selection or identified in isolates from Asia. The prevalence of K13-propeller and FP2 polymorphisms did not increase over time, and was not associated with either time since prior receipt of an ACT or the persistence of parasites ≥2 days following treatment with an ACT. Thus, the K13-propeller and FP2 polymorphisms associated with artemisinin resistance are not prevalent in Uganda, and we did not see evidence for selection of polymorphisms in these genes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, et al. (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467. - PMC - PubMed
    1. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, et al. (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 2619–2620. - PubMed
    1. Miotto O, Almagro-Garcia J, Manske M, Macinnis B, Campino S, et al. (2013) Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet. - PMC - PubMed
    1. Mita T, Venkatesan M, Ohashi J, Culleton R, Takahashi N, et al. (2011) Limited geographical origin and global spread of sulfadoxine-resistant dhps alleles in Plasmodium falciparum populations. J Infect Dis 204: 1980–1988. - PMC - PubMed
    1. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, et al. (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320–323. - PubMed

Publication types

MeSH terms

Associated data