Microglial Aβ receptors in Alzheimer's disease
- PMID: 25149075
- PMCID: PMC11486233
- DOI: 10.1007/s10571-014-0101-6
Microglial Aβ receptors in Alzheimer's disease
Abstract
Amyloid β (Aβ) plays a pivotal role in the progression of Alzheimer's disease (AD) through its neurotoxic and inflammatory effects. On one hand, Aβ binds to microglia and activates them to produce inflammatory mediators. On the other hand, Aβ is cleared by microglia through receptor-mediated phagocytosis and degradation. This review focuses on microglial membrane receptors that bind Aβ and contribute to microglial activation and/or Aβ phagocytosis and clearance. These receptors can be categorized into several groups. The scavenger receptors (SRs) include scavenger receptor A-1 (SCARA-1), MARCO, scavenger receptor B-1 (SCARB-1), CD36 and the receptor for advanced glycation end product (RAGE). The G protein-coupled receptors (GPCRs) are formyl peptide receptor 2 (FPR2) and chemokine-like receptor 1 (CMKLR1). There are also toll-like receptors (TLRs) including TLR2, TLR4, and the co-receptor CD14. Functionally, SCARA-1 and CMKLR1 are involved in the uptake of Aβ, and RAGE is responsible for the activation of microglia and production of proinflammatory mediators following Aβ binding. CD36, CD36/CD47/α6β1-intergrin, CD14/TLR2/TLR4, and FPR2 display both functions. Additionally, MARCO and SCARB-1 also exhibit the ability to bind Aβ and may be involved in the progression of AD. Here, we focus on the expression and distribution of these receptors in microglia and their roles in microglia interaction with Aβ. Finally, we discuss the potential therapeutic value of these receptors in AD.
Figures

Similar articles
-
Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer's disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence.Neurobiol Aging. 2018 Oct;70:203-216. doi: 10.1016/j.neurobiolaging.2018.06.020. Epub 2018 Jun 28. Neurobiol Aging. 2018. PMID: 30031930
-
Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer's disease.Int J Alzheimers Dis. 2012;2012:489456. doi: 10.1155/2012/489456. Epub 2012 May 15. Int J Alzheimers Dis. 2012. PMID: 22666621 Free PMC article.
-
Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice.J Neurosci. 2008 Aug 13;28(33):8354-60. doi: 10.1523/JNEUROSCI.0616-08.2008. J Neurosci. 2008. PMID: 18701698 Free PMC article.
-
Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease.J Pept Sci. 2004 May;10(5):229-48. doi: 10.1002/psc.573. J Pept Sci. 2004. PMID: 15160835 Review.
-
Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer's disease.Curr Protein Pept Sci. 2004 Feb;5(1):19-31. doi: 10.2174/1389203043486937. Curr Protein Pept Sci. 2004. PMID: 14965318 Review.
Cited by
-
Identification of immunogenic cell death-related genes involved in Alzheimer's disease.Sci Rep. 2024 Feb 15;14(1):3786. doi: 10.1038/s41598-024-54357-6. Sci Rep. 2024. PMID: 38360834 Free PMC article.
-
Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders.Ann Neurosci. 2021 Jul;28(3-4):191-200. doi: 10.1177/09727531211070532. Epub 2022 Jan 25. Ann Neurosci. 2021. PMID: 35341232 Free PMC article. Review.
-
Microglia pack a toolbox for life.Trends Immunol. 2024 May;45(5):338-345. doi: 10.1016/j.it.2024.03.010. Epub 2024 Apr 13. Trends Immunol. 2024. PMID: 38616144 Free PMC article. Review.
-
ALX/FPR2 Receptor Activation by Inflammatory (fMLFII) and Pro-resolving (LXA4 and RvD3) Agonists.ACS Phys Chem Au. 2025 Jun 6;5(4):367-374. doi: 10.1021/acsphyschemau.5c00008. eCollection 2025 Jul 23. ACS Phys Chem Au. 2025. PMID: 40727226 Free PMC article.
-
Autophagy & Phagocytosis in Neurological Disorders and their Possible Cross-talk.Curr Neuropharmacol. 2021;19(11):1912-1924. doi: 10.2174/1570159X19666210407150632. Curr Neuropharmacol. 2021. PMID: 33827410 Free PMC article. Review.
References
-
- Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421 - PMC - PubMed
-
- Alarcon R, Fuenzalida C, Santibanez M, von Bernhardi R (2005) Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 280(34):30406–30415. doi:10.1074/jbc.M414686200 - PubMed
-
- Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 178(6):3912–3917 - PubMed
-
- Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ (2011) Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation 8:79. doi:10.1186/1742-2094-8-79 - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous