Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 30;5(16):6687-700.
doi: 10.18632/oncotarget.2235.

Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma

Affiliations

Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma

Negar Babae et al. Oncotarget. .

Abstract

Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Anti-angiogenic property of miR-7 in vitro
(a) miR-7 inhibits HUVEC cell viability. Cell viability was measured at 72 hrs after transfection using MTS-read-out. Cells were transfected with increasing concentrations of miR-7, miR-scr or siPLK-1. siPLK-1 and miR-scr were used as positive and negative control. Data are normalized to cell viability of untreated cells and plotted as mean values ± s.d. (n=3). (b) Cellular miR-7 expression increases after transfection of HUVEC with increasing concentrations of miR-7. miR-7 expression was measured by stem-loop RT-PCR at 72 hrs after transfection. Data are normalized to untreated cells and plotted as mean values ± s.d. (n=3), * p<0.001. (c-d) miR-7 inhibits two-dimensional tube formation. HUVEC were transfected with 50 nM miR-7 or miR-scr and seeded on matrigel at 48hrs after transfection. Pictures were taken at 17 hrs after seeding (magnification in Supplementary Fig. S11). Two-dimensional tube-formation was quantified by counting number of branching points and calculating the cumulative length of the tube of each image. Data are plotted as mean values ± s.d. (n= 3), * p<0.0001. (e-f) miR-7 inhibits three-dimensional sprouting. HUVEC were transfected with 50 nM miR-7 or miR-scr. 24hrs after transfection cell-spheroids were embedded in a collagen matrix in the presence of basic Fibroblast Growth Factor (bFGF). Untreated HUVEC in the absence of bFGF were used as negative control and the sprouting of miR-7 and miR-scr treated cells were compared to the sprouting of bFGF activated HUVEC. Pictures were taken at 16 hrs after embedding. Three-dimensional sprouting was quantified by counting the sprouts and calculating the cumulative length of 10 individual spheroids for each treatment. Data are plotted as mean values ± s.d. (n= 10), * p<0.0001. (g-h) miR-7 inhibits migration. HUVEC were transfected with 50 nM miR-7 or miR-scr. Cells were harvested at 48hrs after transfection and equal amount of cells were seeded in 24-well plate and wounded by a scratch. Images were taken right after the wound scratch (T=0) and at 17hrs after scratching (T=17) Wound closure was quantified by calculating unclosed surface area relative to surface area right after the scratch wound. Data are plotted as mean values ± s.d. (n=3),* p<0.001.
Figure 2
Figure 2. miR-7 modifies endothelial gene expression
(a) miR-7 changes the expression of 2500 HUVEC genes after transfection. HUVEC were transfected with either miR-7 or miR-Scr and the transcriptome was quantified by RNA-Seq. All differentially expressed genes, which are statistically significant down- or upregulated compared to miR-Scr (p-value< 0.05) are plotted. (b) Majority of miR-7 predicted target genes are downregulated. Differentially expressed genes that are regulated by miR-7 and are a predicted target genes of miR-7 are plotted. (c) mRNA expression of OGT is downregulated after miR-7 transfection. HUVEC were transfected with increasing concentrations of miR-7 or miR-Scr. OGT expression was measured by RT-PCR at 48 hrs after transfection. Data are normalized to untreated cells and plotted as mean values ± s.d. (n=3), *p<0.001. (d) OGT protein is downregulated after miR-7 transfection. HUVEC were transfected with increasing concentration of miR-7 or miR-Scr. OGT expression was determined by Western Blot analysis at 48 hrs after transfection. Beta-Actin was used as an internal control. (e) OGT is a target gene of miR-7. Luciferase activities in Hela cells co-transfected with a luciferase- OGT 3′UTR plasmid containing either wildtype (WT) 3′UTR or mutated sequence and either miR-Scr or miR-7 at 24 hrs post transfection. Data are normalized to miR-Scr and plotted as mean values ± s.d. (n=3), *p<0.0002. (f) Alignment of miR-7 and OGT sequence. Mutations were generated on the potential target sequence (horizontally underlined).
Figure 3
Figure 3. Effect of miR-7 on the CAM-assay
(a) Seed sequence of miR-7. Illustration of conserved seed sequence of miR-7 among different species. (b) miR-7 acts as vascular disrupting agent on CAM. Chick CAMs were treated locally within a nitrocellulose ring with 300 picomol miR-7 or miR-Scr using Lipofectamine 2000 or with 200 picomol sunitinib. Untreated and mock treated CAM were used as controls. Representative photographs were taken prior to transfection (T=0) and at 48 hrs after transfection (T=48).
Figure 4
Figure 4. Inhibitory effect of miR-7 on tumor growth by local delivery
(a) miR-7 inhibits tumor growth after local delivery. AJ mice bearing tumors with Neuro2A cells were treated locally with 10 μg miR-7 or 10 μg miR-Scr or PBS by intratumoral injection and electroporation. Arrows below the graph indicate treatment schedule (6 treatments, every other day). Data are plotted as mean values ± SEM (n=7), p<0.05. (b) Increased presence of miR-7 in miR-7 treated animals. The day after the last injection tumors were removed and total RNA was isolated. Delivery of miR-7 by electroporation into the tumor tissue was determined by stem loop RT-PCR. Values were normalized to U6 expression in the tumors. Data are plotted as mean values ± s.d. (n=3), *p<0.001. (c-d) miR-7 reduces angiogenesis in vivo after local delivery. Tumor sections were stained for CD31 (in brown) and microvessel density (MVD) was quantified by counting blood vessels in 6 random high magnification fields in each sample. Data are plotted as mean values ± s.d. (n=4), *p< 0.01. (e-f) miR-7 does not affect proliferation in Neuro2A tumors. The effect of miR-7 on tumor cell proliferation was determined by Ki-67 staining (in brown). Quantification of the images was performed in the same way as described in (c-d), and expressed as percentage of the PBS treated group. Data are plotted as mean values ± s.d. (n=4). Magnification of Fig 4c and 4e in Supplementary Fig. S12.
Figure 5
Figure 5. Inhibitory effect of miR-7 on tumor growth by systemic delivery
(a) miR-7 treated animals show pale and less vascularized tumors. Macroscopic images of the tumors after the 7th dose administration. (b) miR-7 inhibits tumor growth after systemic delivery. Athymic Nude-Foxn1nu mice bearing U-87 MG tumors were injected intravenously with αvβ3/αvβ5 targeted miR-7 nanoparticles (3 mg/kg miRNA). Arrows in the graph indicate the days of treatment (8 treatments, every other day). miR-7 treated mice showed significant tumor growth inhibition compared to vehicle treated mice. Data are plotted as mean values ± SEM (n=10), *p<0.05. (c-d) miR-7 reduces angiogenesis after systemic delivery. Tumor sections were stained for CD31 (in brown) and quantified by counting CD31 positive staining area (pixels) in 6 random fields in each tumor. Data are plotted as mean values ± s.d. (n=5), *p<0.001. Magnification of Fig 5c in Supplementary Fig. S13. (e-f) miR-7 reduces cell-proliferation in U-87 MG tumors after systemic delivery. Anti-proliferative effect of systemically delivered miR-7 was determined by Ki-67 staining, indicated as brown spots. Quantification of Ki-67 was performed by counting of the stains in 6 random fields in each tumor section and proliferation was expressed as percentage of PBS treated mice. Data are plotted as mean values ± s.d. (n=5), *p<0.001. (g-h) miR-7 reduces OGT in U-87 MG tumors after systemic delivery. Tumor sections stained for OGT (brown nuclei and brownish cytoplasm) and quantified by counting of the stains in 6 random fields in each tumor section. Data are plotted as mean values ±s.d. (n=5), * p=0.0004.

References

    1. Skalak TC. Angiogenesis and microvascular remodeling: a brief history and future roadmap. Microcirculation. 2005;12(1):47–58. - PubMed
    1. Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–10934. - PubMed
    1. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–286. - PubMed
    1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–1186. - PubMed
    1. Fakhrejahani E, Toi M. Tumor angiogenesis: pericytes and maturation are not to be ignored. J Oncol. 2012;2012:261750. - PMC - PubMed

Publication types

MeSH terms