Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 23:14:75.
doi: 10.1186/1472-6947-14-75.

Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection

Affiliations

Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection

Nan Liu et al. BMC Med Inform Decis Mak. .

Abstract

Background: The key aim of triage in chest pain patients is to identify those with high risk of adverse cardiac events as they require intensive monitoring and early intervention. In this study, we aim to discover the most relevant variables for risk prediction of major adverse cardiac events (MACE) using clinical signs and heart rate variability.

Methods: A total of 702 chest pain patients at the Emergency Department (ED) of a tertiary hospital in Singapore were included in this study. The recruited patients were at least 30 years of age and who presented to the ED with a primary complaint of non-traumatic chest pain. The primary outcome was a composite of MACE such as death and cardiac arrest within 72 h of arrival at the ED. For each patient, eight clinical signs such as blood pressure and temperature were measured, and a 5-min ECG was recorded to derive heart rate variability parameters. A random forest-based novel method was developed to select the most relevant variables. A geometric distance-based machine learning scoring system was then implemented to derive a risk score from 0 to 100.

Results: Out of 702 patients, 29 (4.1%) met the primary outcome. We selected the 3 most relevant variables for predicting MACE, which were systolic blood pressure, the mean RR interval and the mean instantaneous heart rate. The scoring system with these 3 variables produced an area under the curve (AUC) of 0.812, and a cutoff score of 43 gave a sensitivity of 82.8% and specificity of 63.4%, while the scoring system with all the 23 variables had an AUC of 0.736, and a cutoff score of 49 gave a sensitivity of 72.4% and specificity of 63.0%. Conventional thrombolysis in myocardial infarction score and the modified early warning score achieved AUC values of 0.637 and 0.622, respectively.

Conclusions: It is observed that a few predictors outperformed the whole set of variables in predicting MACE within 72 h. We conclude that more predictors do not necessarily guarantee better prediction results. Furthermore, machine learning-based variable selection seems promising in discovering a few relevant and significant measures as predictors.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Variable selection algorithm. This algorithm creates 500 data subsets for subsequent analysis. Each subset combines 29 patients with MACE and 29 randomly selected patients without MACE. Then, the algorithm runs random forest on each subset to pick 8 top-ranked variables. Having 500 sets of top-ranked variables, the algorithm sorts them according to their corresponding occurrence in the ensemble and chooses 8 variables with the highest appearance. The selection is refined by means of the statistical significance of each individual variable.
Figure 2
Figure 2
Flowchart of the machine learning-based risk scoring method.
Figure 3
Figure 3
Individual variables and their corresponding occurrences in the ensemble for variable selection. The occurrence indicates the total number of appearance for a single variable in 500 random forest-based variable selectors. Therefore, the upper bound of the occurrence is 500.
Figure 4
Figure 4
ROC curves of machine learning scores, TIMI and MEWS scores in predicting MACE within 72 h.

References

    1. McCaig LF, Burt CW. National Hospital Ambulatory Medical Care Survey: 2001 emergency department summary. Adv Data. 2003;335:1–29. - PubMed
    1. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, Chavey WE 2nd, Fesmire FM, Hochman JS, Levin TN, Lincoff AM, Peterson ED, Theroux P, Wenger NK, Wright RS, Smith SC Jr, Jacobs AK, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol. 2007;50(7):e1–e157. - PubMed
    1. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345(20):1473–1482. - PubMed
    1. Goldman L, Cook EF, Johnson PA, Brand DA, Rouan GW, Lee TH. Prediction of the need for intensive care in patients who come to the emergency departments with acute chest pain. N Engl J Med. 1996;334(23):1498–1504. - PubMed
    1. Antman E, Cohen M, Bernink P, McCabe C, Horacek T, Papuchis G, Mautner B, Corbalan R, Radley D, Braunwald E. The TIMI risk score for unstable angina/non-ST elevation MI - A method for prognostication and therapeutic decision making. JAMA. 2000;284(7):835–842. - PubMed