Approximate Bayesian inference for complex ecosystems
- PMID: 25152812
- PMCID: PMC4136695
- DOI: 10.12703/P6-60
Approximate Bayesian inference for complex ecosystems
Abstract
Mathematical models have been central to ecology for nearly a century. Simple models of population dynamics have allowed us to understand fundamental aspects underlying the dynamics and stability of ecological systems. What has remained a challenge, however, is to meaningfully interpret experimental or observational data in light of mathematical models. Here, we review recent developments, notably in the growing field of approximate Bayesian computation (ABC), that allow us to calibrate mathematical models against available data. Estimating the population demographic parameters from data remains a formidable statistical challenge. Here, we attempt to give a flavor and overview of ABC and its applications in population biology and ecology and eschew a detailed technical discussion in favor of a general discussion of the advantages and potential pitfalls this framework offers to population biologists.
Similar articles
-
Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution.Stat Comput. 2015;25(2):289-301. doi: 10.1007/s11222-013-9432-2. Epub 2013 Nov 29. Stat Comput. 2015. PMID: 26097293 Free PMC article.
-
Fundamentals and Recent Developments in Approximate Bayesian Computation.Syst Biol. 2017 Jan 1;66(1):e66-e82. doi: 10.1093/sysbio/syw077. Syst Biol. 2017. PMID: 28175922 Free PMC article.
-
Approximate Bayesian computation for inferring Waddington landscapes from single-cell data.R Soc Open Sci. 2024 Jul 10;11(7):231697. doi: 10.1098/rsos.231697. eCollection 2024 Jul. R Soc Open Sci. 2024. PMID: 39076359 Free PMC article.
-
Approximate Bayesian Computation (ABC) in practice.Trends Ecol Evol. 2010 Jul;25(7):410-8. doi: 10.1016/j.tree.2010.04.001. Epub 2010 May 18. Trends Ecol Evol. 2010. PMID: 20488578 Review.
-
On the use of kernel approximate Bayesian computation to infer population history.Genes Genet Syst. 2015;90(3):153-62. doi: 10.1266/ggs.90.153. Genes Genet Syst. 2015. PMID: 26510570 Review.
Cited by
-
Modeling the architecture of the regulatory system controlling methylenomycin production in Streptomyces coelicolor.J Biol Eng. 2017 Oct 3;11:30. doi: 10.1186/s13036-017-0071-6. eCollection 2017. J Biol Eng. 2017. PMID: 29026441 Free PMC article.
-
A large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology.PLoS One. 2017 Mar 31;12(3):e0174293. doi: 10.1371/journal.pone.0174293. eCollection 2017. PLoS One. 2017. PMID: 28362820 Free PMC article.
-
Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art.J R Soc Interface. 2019 Feb 28;16(151):20180943. doi: 10.1098/rsif.2018.0943. J R Soc Interface. 2019. PMID: 30958205 Free PMC article.
-
Mechanistic modelling of tyrosine recombination reveals key parameters determining the performance of a CAR T cell switching circuit.Eng Biol. 2020 Mar 24;4(1):10-19. doi: 10.1049/enb.2019.0020. eCollection 2020 Mar. Eng Biol. 2020. PMID: 36970230 Free PMC article.
References
-
- May RM. Stability and complexity in model ecosystems. 1. Princeton: Princeton University Press; 1973. - PubMed
-
- Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926;1926;118:558–60. doi: 10.1038/118558a0. - DOI
-
- Wilson EO, MacArthur RH. The Theory of Island Biogeography. Princeton: Princeton University Press; 1967.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources