Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 23;8(9):9422-6.
doi: 10.1021/nn5035247. Epub 2014 Aug 25.

Sequential cation exchange generated superlattice nanowires forming multiple p-n heterojunctions

Affiliations

Sequential cation exchange generated superlattice nanowires forming multiple p-n heterojunctions

Chih-Shan Tan et al. ACS Nano. .

Abstract

Fabrication of superlattice nanowires (NWs) with precisely controlled segments normally requires sequential introduction of reagents to the growing wires at elevated temperatures and low pressure. Here we demonstrate the fabrication of superlattice NWs possessing multiple p-n heterojunctions by converting the initially formed CdS to Cu2S NWs first and then to segmented Cu2S-Ag2S NWs through sequential cation exchange at low temperatures. In the formation of Cu2S NWs, twin boundaries generated along the NWs act as the preferred sites to initiate the nucleation and growth of Ag2S segments. Varying the immersion time of Cu2S NWs in a AgNO3 solution controls the Ag2S segment length. Adjacent Cu2S and Ag2S segments in a NW were found to display the typical electrical behavior of a p-n junction.

Keywords: cation exchange; heterojunction; p−n diode; superlattice.

PubMed Disclaimer

Publication types

LinkOut - more resources