Mechanistic evidence in support of alpha1-antitrypsin as a therapeutic approach for type 1 diabetes
- PMID: 25155845
- PMCID: PMC4455465
- DOI: 10.1177/1932296814547096
Mechanistic evidence in support of alpha1-antitrypsin as a therapeutic approach for type 1 diabetes
Abstract
Utilizing endogenous molecules as a therapeutic approach is almost unequivocally superior to engineered or synthetic molecules. However, one rarely encounters an anti-inflammatory, cytoprotective, immunomodulatory and wound-healing molecule that has been available for use for decades. α1-antitrypsin (AAT), a circulating protein that rises more than 4-fold during acute-phase responses, has been administered for a rare genetic deficiency at large doses, for life. Aside from advances in insulin therapy, medical research in type 1 diabetes (T1D) has predominantly focused on autoimmunity--controlling the adaptive immune response. However, it is now appreciated that one may need to extend therapeutic targets to incorporate immune responses to cellular injury, as well as promote selective control over excessive inflammation and early tissue repair. Recent data suggest that tissue damage related to lung and renal ischemia-reperfusion injury, stroke, and ischemic heart disease is markedly reduced by AAT. AAT was also shown to protect pancreatic islet β cells at multiple levels. Unlike classic immunosuppressive and anti-inflammatory approaches, AAT exerts some antiviral and antibacterial activities. Based on these and other reports, AAT is under evaluation for treatment of T1D patients in multiple clinical trials. Initial results suggest that AAT therapy could potentially improve insulin production without adverse effects. Up to 50% of individuals displayed improved islet function. It is a rare occurrence in T1D research that a therapy is offered that holds a safety profile equal or superior to that of insulin alone. While placebo-controlled trials are ongoing, the mechanism(s) behind these favorable activities of AAT are still being explored.
Keywords: clinical trials; inflammation; pancreatic islets; tissue injury.
© 2014 Diabetes Technology Society.
Conflict of interest statement
Figures
References
-
- Congote LF, Temmel N, Sadvakassova G, Dobocan MC. Comparison of the effects of serpin A1, a recombinant serpin A1-IGF chimera and serpin A1 C-terminal peptide on wound healing. Peptides. 2008;29(1):39-46. - PubMed
-
- Bellacen K, Kalay N, Ozeri E, Shahaf G, Lewis EC. Revascularization of pancreatic islet allografts is enhanced by alpha-1-antitrypsin under anti-inflammatory conditions. Cell Transplant. 2013;22(11):2119-2133. - PubMed
-
- Eming SA, Koch M, Krieger A, et al. Differential proteomic analysis distinguishes tissue repair biomarker signatures in wound exudates obtained from normal healing and chronic wounds. J Proteome Res. 2010;9(9):4758-4766. - PubMed
-
- Grady MW, Bloor S, Doyle PJ. Wound healing compositions containing alpha-1-antitrypsin. Google Patents; 2003.
-
- Bosco D, Meda P, Morel P, et al. Expression and secretion of alpha1-proteinase inhibitor are regulated by proinflammatory cytokines in human pancreatic islet cells. Diabetologia. 2005;48(8):1523-1533. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
