Concurrent exercise on a gravity-independent device during simulated microgravity
- PMID: 25160844
- PMCID: PMC4340828
- DOI: 10.1249/MSS.0000000000000483
Concurrent exercise on a gravity-independent device during simulated microgravity
Abstract
Purpose: The objective of this study is to examine the effect of a high-intensity concurrent training program using a single gravity-independent device on maintaining skeletal muscle function and aerobic capacity during short-term unilateral lower limb suspension (ULLS).
Methods: Nineteen subjects (10 males and 9 females; 21.0 ± 2.5 yr, 65.4 ± 12.2 kg) were separated into two groups: 1) 10-d ULLS only (n = 9) and 2) 10-d ULLS plus aerobic and resistance training (ULLS + EX, n = 10). Exercise was performed on a single gravity-independent Multi-Mode Exercise Device (M-MED) with alternating days of high-intensity interval aerobic training and maximal exertion resistance training.
Results: Aerobic capacity increased by 7% in ULLS + EX (P < 0.05). Knee extensor and ankle plantar flexor three-repetition maximum increased in the ULLS + EX group (P < 0.05), but this change was only different from ULLS in the plantar flexors (P < 0.05). Peak torque levels decreased with ULLS but were increased for the knee extensors and attenuated for the ankle plantar flexors with ULLS + EX (P < 0.05). A shift toward type IIx myosin heavy-chain mRNA occurred with ULLS and was reversed with ULLS + EX in the vastus lateralis (P < 0.05) but not the soleus. Myostatin and atrogin increased with ULLS in both the vastus lateralis and soleus, but this change was mitigated with ULLS + EX only in the vastus lateralis (P = 0.0551 for myostatin, P < 0.05 for atrogin). Citrate synthase was decreased in the soleus during ULLS but was increased with ULLS + EX (P < 0.05).
Conclusion: These results indicate that an M-MED class countermeasure device appears to be effective at mitigating the deconditioning effects of microgravity simulated during a modified ULLS protocol.
Figures
References
-
- Adams GR, Haddad F, McCue SA, Bodell PW, Zeng M, Qin L, Qin AX, Baldwin KM. Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms. J Appl Physiol. 2000;88(3):904–16. - PubMed
-
- Alkner BA, Berg HE, Kozlovskaya I, Sayenko D, Tesch PA. Effects of strength training, using a gravity-independent exercise system, performed during 110 days of simulated space station confinement. Eur J Appl Physiol. 2003;90(1–2):44–9. - PubMed
-
- Alkner BA, Tesch PA. Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand. 2004;181(3):345–57. - PubMed
-
- Alkner BA, Tesch PA. Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol. 2004;93(3):294–305. - PubMed
-
- Baechle TR, Earle RW. Essentials of strength training and conditioning. 2nd ed. xiii. Human Kinetics; Champaign (IL): 2000. p. 658.
