Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124
- PMID: 25164099
- DOI: 10.1002/bit.25445
Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124
Abstract
Spathaspora passalidarum NN245 (NRRL-Y27907) is an ascomycetous yeast that displays a higher specific fermentation rate with xylose than with glucose. Previous studies have shown that its capacity for xylose fermentation increases while cell yield decreases with decreasing aeration. Aeration optimization plays a crucial role in maximizing bioethanol production from lignocellulosic hydrolysates. Here, we compared the kinetics of S. passalidarum NN245 and Scheffersomyces (Pichia) stipitis NRRL Y-7124 fermenting 15% glucose, 15% xylose, or 12% xylose plus 3% glucose under four different aeration conditions. The maximum specific fermentation rate for S. passalidarum was 0.153 g ethanol/g CDW · h with a yield of 0.448 g/g from 150 g/L xylose at an oxygen transfer rate of 2.47 mmol O2 /L h. Increasing the OTR to 4.27 mmol O2 /L h. decreased the ethanol yield from 0.46 to 0.42 g/g xylose while increasing volumetric ethanol productivity from 0.52 to 0.8 g/L h. Both yeasts had lower cells yields and higher ethanol yields when growing on xylose than when growing on glucose. Acetic acid accretions of both strains correlated positively with increasing aeration. S. passalidarum secreted lower amounts of polyols compared to S. stipitis under most circumstances. In addition, the composition of polyols differed: S. passalidarum accumulated mostly xylitol and R,R-2,3-butanediol (BD) whereas S. stipitis accumulated mostly xylitol and ribitol when cultivated in xylose or a mixture of 12% xylose and 3% glucose. R,R-2,3-BD accumulation by S. passalidarum during xylose fermentation can be as much as four times of that by S. stipitis, and R,R-2,3-BD is also the most abundant byproduct after xylitol. The ratios of polyols accumulated by the two species under different aeration conditions and the implications of these observations for strain and process engineering are discussed.
Keywords: Spathaspora passalidarum; fermentation byproducts; fermentation kinetics; oxygen transfer rate; polyol dehydrogenase; xylose.
© 2014 Wiley Periodicals, Inc.
Similar articles
-
Anaerobic xylose fermentation by Spathaspora passalidarum.Appl Microbiol Biotechnol. 2012 Apr;94(1):205-14. doi: 10.1007/s00253-011-3694-4. Epub 2011 Nov 30. Appl Microbiol Biotechnol. 2012. PMID: 22124720
-
Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol.Braz J Microbiol. 2022 Jun;53(2):977-990. doi: 10.1007/s42770-022-00693-6. Epub 2022 Feb 16. Braz J Microbiol. 2022. PMID: 35174461 Free PMC article.
-
Comparative assessment of fermentative capacity of different xylose-consuming yeasts.Microb Cell Fact. 2017 Sep 13;16(1):153. doi: 10.1186/s12934-017-0766-x. Microb Cell Fact. 2017. PMID: 28903764 Free PMC article.
-
Genetic improvement of native xylose-fermenting yeasts for ethanol production.J Ind Microbiol Biotechnol. 2015 Jan;42(1):1-20. doi: 10.1007/s10295-014-1535-z. Epub 2014 Nov 18. J Ind Microbiol Biotechnol. 2015. PMID: 25404205 Review.
-
Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha).J Ind Microbiol Biotechnol. 2020 Jan;47(1):109-132. doi: 10.1007/s10295-019-02242-x. Epub 2019 Oct 21. J Ind Microbiol Biotechnol. 2020. PMID: 31637550 Free PMC article. Review.
Cited by
-
Polyols Induce the Production of Antifungal Compounds by Lactobacillus plantarum.Curr Microbiol. 2022 Feb 12;79(4):99. doi: 10.1007/s00284-022-02761-4. Curr Microbiol. 2022. PMID: 35150334
-
Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts.BMC Biotechnol. 2019 Aug 5;19(1):58. doi: 10.1186/s12896-019-0548-0. BMC Biotechnol. 2019. PMID: 31382948 Free PMC article.
-
Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors.Appl Microbiol Biotechnol. 2022 Jun;106(11):4075-4089. doi: 10.1007/s00253-022-11987-y. Epub 2022 May 27. Appl Microbiol Biotechnol. 2022. PMID: 35622124
-
Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21.Springerplus. 2016 Feb 27;5:185. doi: 10.1186/s40064-016-1881-6. eCollection 2016. Springerplus. 2016. PMID: 27026881 Free PMC article.
-
Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis.PLoS One. 2017 Jun 28;12(6):e0180074. doi: 10.1371/journal.pone.0180074. eCollection 2017. PLoS One. 2017. PMID: 28658270 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources