Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2014 Aug 28:13:337.
doi: 10.1186/1475-2875-13-337.

Finding connections in the unexpected detection of Plasmodium vivax and Plasmodium falciparum DNA in asymptomatic blood donors: a fact in the Atlantic Forest

Affiliations
Editorial

Finding connections in the unexpected detection of Plasmodium vivax and Plasmodium falciparum DNA in asymptomatic blood donors: a fact in the Atlantic Forest

Maria Anice Mureb Sallum et al. Malar J. .

Abstract

A recent paper in Malaria Journal reported the observation of unexpected prevalence rates of healthy individuals carrying Plasmodium falciparum (5.14%) or Plasmodium vivax (2.26%) DNA among blood donors from the main transfusion centre in the metropolitan São Paulo, a non-endemic area for malaria. The article has been challenged by a group of authors who argued that the percentages reported were higher than those found in blood banks of the endemic Amazon Region and also that that paper had not considered the literature on the classical dynamics of malaria transmission in the Atlantic Forest, which involves Anopheles (Kerteszia) cruzii and bromeliad malaria, due to P. vivax and Plasmodium malariae parasites, but not P. falciparum. The present commentary paper responds to this challenge and brings evidence and literature data supporting that the observed prevalence ratios may indicate a proportion of individuals that are exposed to Plasmodium transmission in permissive environments; that blood carrying parasite DNA may not be necessarily infective if used in transfusion; and that in the literature, there are examples supporting the circulation of P. falciparum in the area.

PubMed Disclaimer

Comment on

References

    1. Maselli LMF, Levy D, Laporta GZ, Monteiro AM, Fukuya LA, Ferreira da Cruz MF, Daniel-Ribeiro CT, Dorlhiac-Llacer PE, Sallum MAM, Bydlowski SP. Detection of Plasmodium falciparum and Plasmodium vivax subclinical infection in non-endemic region: implications for blood transfusion and malaria epidemiology. Malar J. 2014;13:224. doi: 10.1186/1475-2875-13-224. - DOI - PMC - PubMed
    1. Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, Gueye CS, Fullman N, Gosling RD, Feachem RG. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–911. doi: 10.1016/S0140-6736(13)60310-4. - DOI - PMC - PubMed
    1. Sinka ME. Global Distribution of the Dominant Vector Species of Malaria, Anopheles mosquitoes. In: Manguin S, editor. New insights into malaria vectors. Rijeka: InTech; 2013.
    1. Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S, Dolecek C, Hien TT, do Rosário VE, Arez AP, Pinto J, Michon P, Escalante AA, Nosten F, Burke M, Lee R, Blaze M, Otto TD, Barnwel JW, Pain A, Williams J, White NJ, Day NPJ, Snounou G, Lockhart PJ, Chiodini PL, Imwong M, Polley SD. Two non-recombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis. 2010;201:1544–1550. doi: 10.1086/652240. - DOI - PubMed
    1. Begon M, et al. Ecological epidemiology. In: Levin SA, et al., editors. The Princeton Guide to Ecology. Princeton: Princeton University Press; 2009. pp. 220–226.

MeSH terms