Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 29;9(8):e104589.
doi: 10.1371/journal.pone.0104589. eCollection 2014.

Developmental changes of TGF-β1 and Smads signaling pathway in intestinal adaption of weaned pigs

Affiliations

Developmental changes of TGF-β1 and Smads signaling pathway in intestinal adaption of weaned pigs

Kan Xiao et al. PLoS One. .

Abstract

Weaning stress caused marked changes in intestinal structure and function. Transforming growth factor-β1 (TGF-β1) and canonical Smads signaling pathway are suspected to play an important regulatory role in post-weaning adaptation of the small intestine. In the present study, the intestinal morphology and permeability, developmental expressions of tight junction proteins and TGF-β1 in the intestine of piglets during the 2 weeks after weaning were assessed. The expressions of TGF-β receptor I/II (TβRI, TβRII), smad2/3, smad4 and smad7 were determined to investigate whether canonical smads signaling pathways were involved in early weaning adaption process. The results showed that a shorter villus and deeper crypt were observed on d 3 and d 7 postweaning and intestinal morphology recovered to preweaning values on d 14 postweaning. Early weaning increased (P<0.05) plasma level of diamine oxidase (DAO) and decreased DAO activities (P<0.05) in intestinal mucosa on d 3 and d 7 post-weaning. Compared with the pre-weaning stage (d 0), tight junction proteins level of occludin and claudin-1 were reduced (P<0.05) on d 3, 7 and 14 post-weaning, and ZO-1 protein was reduced (P<0.05) on d 3 and d 7 post-weaning. An increase (P<0.05) of TGF-β1 in intestinal mucosa was observed on d 3 and d 7 and then level down on d 14 post-weaning. Although there was an increase (P<0.05) of TβR II protein expression in the intestinal mucosa on d3 and d 7, no significant increase of mRNA of TβRI, TβRII, smad2/3, smad4 and smad7 was observed during postweaning. The results indicated that TGF-β1 was associated with the restoration of intestinal morphology and barrier function following weaning stress. The increased intestinal endogenous TGF-β1 didn't activate the canonical Smads signaling pathway.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Tight junction protein levels of occludin, claudin-1 and zonula occludens-1 (ZO-1).
(A) shows representative blots of occludin, claudin, zonula occludens-1 (ZO-1), and β-actin on 0, 3, 7 and 14 post-weaning, respectively. (B) shows relative tight junction proteins expression. Data are means ± SD. a,bMeans with different letters differ significantly (P<0.05). The control sample on day 0 post-weaning was used as the reference sample. The protein expression of all samples was expressed as fold changes, calculated relative to the control group on day 0 post-weaning.
Figure 2
Figure 2. The change of TGF-β1 level in jejunal mucosa of weaned piglets during the 2 weeks.
(A) shows representative blots of TGF-β1 expression and β-actin on 0, 3, 7 and 14 post-weaning, respectively. (B) shows relative TGF-β1 protein expression in jejunal mucosa of piglets after weaning. a,b,c Mean values with unlike letters were significantly different (P<0.05). Values are means and standard deviations represented by vertical bars. The control sample on day 0 post-weaning was used as the reference sample. The protein expression of all samples was expressed as fold changes, calculated relative to the control group on day 0 post-weaning.
Figure 3
Figure 3. The protein levels of TβRI and TβRII in jejunal mucosa during the 2 weeks after weaning.
(A) shows representative blots of TβR I, TβR II proteins expression and β-actin on 0, 3, 7 and 14 post-weaning, respectively. (B) shows relative TβR I and TβR II proteins expression. a,b,Mean values with unlike letters were significantly different (P<0.05). Values are means and standard deviations represented by vertical bars. The value of protein expression was the ratio of the densitometry units of TβR I, TβR II protein and β-actin. The control sample on day 0 post-weaning was used as the reference sample. The protein expression of all samples was expressed as fold changes, calculated relative to the control group on day 0 post-weaning.

References

    1. Moeser AJ, Ryan KA, Nighot PK, Blikslager AT (2007) Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am. J. Physiol Gastrointest Liver Physiol 293: G413–G421. - PubMed
    1. Hu CH, Xiao K, Song J, Luan ZS (2013) Effects of ZnO supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs. Anim Feed Sci Tech 181: 65–71.
    1. Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, et al. (2010) Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol 298: G352–G363. - PMC - PubMed
    1. Hu CH, Xiao K, Luan ZS, Song J (2013) Early weaning increases intestinal permeability, alters expression of cytokine and tight junction protein, and activates mitogen-activated protein kinases in pigs. J Anim Sci 91: 1094–1101. - PubMed
    1. Yin J, Wu MM, Xiao H, Ren WK, Duan JL, et al. (2014) Development of an antioxidant system after early weaning in piglets. J Anim Sci 92: 612–619. - PubMed

Publication types

LinkOut - more resources