Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec;31(12):3095-112.
doi: 10.1093/molbev/msu252. Epub 2014 Aug 28.

Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms

Affiliations

Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms

Craig F Barrett et al. Mol Biol Evol. 2014 Dec.

Abstract

Parasitic organisms exemplify morphological and genomic reduction. Some heterotrophic, parasitic plants harbor drastically reduced and degraded plastid genomes resulting from relaxed selective pressure on photosynthetic function. However, few studies have addressed the initial stages of plastome degradation in groups containing both photosynthetic and nonphotosynthetic species. Corallorhiza is a genus of leafless, heterotrophic orchids that contains both green, photosynthetic species and nongreen, putatively nonphotosynthetic species, and represents an ideal system in which to assess the beginning of the transition to a "minimal plastome." Complete plastomes were generated for nine taxa of Corallorhiza using Illumina paired-end sequencing of genomic DNA to assess the degree of degradation among taxa, and for comparison with a general model of degradation among angiosperms. Quantification of total chlorophyll suggests that nongreen Corallorhiza still produce chlorophyll, but at 10-fold lower concentrations than green congeners. Complete plastomes and partial nuclear rDNA cistrons yielded a fully resolved tree for Corallorhiza, with at least two independent losses of photosynthesis, evidenced by gene deletions and pseudogenes in Co. striata and nongreen Co. maculata. All Corallorhiza show some evidence of degradation in genes of the NAD(P)H dehydrogenase complex. Among genes with open reading frames, photosynthesis-related genes displayed evidence of neutral evolution in nongreen Corallorhiza, whereas genes of the ATP synthase complex displayed some evidence of positive selection in these same groups, though for reasons unknown. Corallorhiza spans the early stages of a general model of plastome degradation and has added critical insight for understanding the process of plastome evolution in heterotrophic angiosperms.

Keywords: Orchidaceae; chlorophyll; chloroplast; parasite; photosynthesis; pseudogene.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources