Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014;15(7):681-90.
doi: 10.2174/1389203715666140901105253.

Neurotensin NTS1-dopamine D2 receptor-receptor interactions in putative receptor heteromers: relevance for Parkinson's disease and schizophrenia

Affiliations
Review

Neurotensin NTS1-dopamine D2 receptor-receptor interactions in putative receptor heteromers: relevance for Parkinson's disease and schizophrenia

Luca Ferraro et al. Curr Protein Pept Sci. 2014.

Abstract

The tridecapeptide neurotensin (NT) acts as neurotransmitter in the central nervous system and in the periphery. NT and NT receptors are largely localized in dopamine (DA)-enriched regions of the mammalian brain. Accordingly, numerous studies indicate the presence of close functional interactions between DA neurons and the peptide. Among others mechanisms, it has been suggested that NT could modulate nigrostriatal, mesolimbic and meso-cortical DA transmission through an antagonistic receptor-receptor interaction between the NT receptor subtype 1 (NTS1) and the dopamine D2 receptor (D2R). In particular, it was originally demonstrated that the peptide reduces the D2R agonist affinity in striatal sections and in striatal membrane preparations. These effects could be a consequence of the direct allosteric NTS1/D2 receptor interactions leading to a decrease in the DA agonist affinity at the D2 receptor. Several neurochemical, biochemical and co-immunoprecipitation data have successively reinforced the indication of the presence of direct NTS1-D2 receptor interactions in the mammalian brain. The present mini-review attempts to provide a summary of current knowledge, mainly emerging from our microdialysis studies, supporting the presence of a NTS1/D2 receptor heteromer in the brain. The pre and post-synaptic mechanisms underlying the involvement of this heteromer in the striatopallidal GABA and mesocorticolimbic DA neurotransmission are discussed especially for their relevance in Parkinson's disease and schizophrenia, respectively.

PubMed Disclaimer

Publication types

LinkOut - more resources