Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;103(10):3335-41.
doi: 10.1002/jps.24129. Epub 2014 Aug 29.

Transport characteristics of tramadol in the blood-brain barrier

Affiliations

Transport characteristics of tramadol in the blood-brain barrier

Atsushi Kitamura et al. J Pharm Sci. 2014 Oct.

Abstract

Tramadol is a centrally acting analgesic whose action is mediated by both agonistic activity at opioid receptors and inhibitory activity on neuronal reuptake of monoamines. The purpose of this study was to characterize the blood-brain barrier (BBB) transport of tramadol by means of microdialysis studies in rat brain and in vitro studies with human immortalized brain capillary endothelial cells (hCMEC/D3). The Kp,uu,brain value of tramadol determined by rat brain microdialysis was greater than unity, indicating that tramadol is actively taken up into the brain across the BBB. Tramadol was transported into hCMEC/D3 cells in a concentration-dependent manner. The uptake was inhibited by type II cations (pyrilamine, verapamil, etc.), but not by substrates of organic cation transporter OCTs or OCTN2. It was also inhibited by a metabolic inhibitor but was independent of extracellular sodium or membrane potential. The uptake was altered by changes of extracellular pH, and by ammonium chloride-induced intracellular acidification, suggesting that transport of tramadol is driven by an oppositely directed proton gradient. Thus, our in vitro and in vivo results suggest that tramadol is actively transported, at least in part, from blood to the brain across the BBB by proton-coupled organic cation antiporter.

Keywords: active transport; blood-brain barrier; drug transport; in vitro models; membrane transporter; microdialysis; organic cation transporter; tramadol.

PubMed Disclaimer

Publication types