Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 15;136(4):E62-73.
doi: 10.1002/ijc.29177. Epub 2014 Sep 12.

Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT

Affiliations

Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT

Antonio Díaz-López et al. Int J Cancer. .

Abstract

Cell plasticity is emerging as a key regulator of tumor progression and metastasis. During carcinoma dissemination epithelial cells undergo epithelial to mesenchymal transition (EMT) processes characterized by the acquisition of migratory/invasive properties, while the reverse, mesenchymal to epithelial transition (MET) process, is also essential for metastasis outgrowth. Different transcription factors, called EMT-TFs, including Snail, bHLH and Zeb families are drivers of the EMT branch of epithelial plasticity, and can be post-transcriptionally downregulated by several miRNAs, as the miR-200 family. The specific or redundant role of different EMT-TFs and their functional interrelations are not fully understood. To study the interplay between different EMT-TFs, comprehensive gain and loss-of-function studies of Snail1, Snail2 and/or Zeb1 factors were performed in the prototypical MDCK cell model system. We here describe that Snail1 and Zeb1 are mutually required for EMT induction while continuous Snail1 and Snail2 expression, but not Zeb1, is needed for maintenance of the mesenchymal phenotype in MDCK cells. In this model system, EMT is coordinated by Snail1 and Zeb1 through transcriptional and epigenetic downregulation of the miR-200 family. Interestingly, Snail1 is involved in epigenetic CpG DNA methylation of the miR-200 loci, essential to maintain the mesenchymal phenotype. The present results thus define a novel functional interplay between Snail and Zeb EMT-TFs in miR-200 family regulation providing a molecular link to their previous involvement in the generation of EMT process in vivo.

Keywords: EMT; MET; Snail1; Snail2; Zeb1; hypermethylation; miR-200f.

PubMed Disclaimer

Publication types