Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 2:5:4783.
doi: 10.1038/ncomms5783.

Broadband optical cooling of molecular rotors from room temperature to the ground state

Affiliations
Free article

Broadband optical cooling of molecular rotors from room temperature to the ground state

Chien-Yu Lien et al. Nat Commun. .
Free article

Abstract

Laser cycling of resonances can remove entropy from a system via spontaneously emitted photons, with electronic resonances providing the fastest cooling timescales because of their rapid spontaneous relaxation. Although atoms are routinely laser-cooled, even simple molecules pose two interrelated challenges for cooling: every populated rotational-vibrational state requires a different laser frequency, and electronic relaxation generally excites vibrations. Here we cool trapped AlH(+) molecules to their ground rotational-vibrational quantum state using an electronically exciting broadband laser to simultaneously drive cooling resonances from many different rotational levels. Undesired vibrational excitation is avoided because of vibrational-electronic decoupling in AlH(+). We demonstrate rotational cooling on the 140(20) ms timescale from room temperature to 3.8(-0.3)(+0.9) K, with the ground-state population increasing from ~3 to 95.4(-2.1)(+1.3)%. This cooling technique could be applied to several other neutral and charged molecular species useful for quantum information processing, ultracold chemistry applications and precision tests of fundamental symmetries.

PubMed Disclaimer

Publication types

LinkOut - more resources