Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;7(6):911-7.
doi: 10.1161/CIRCHEARTFAILURE.114.001575. Epub 2014 Sep 4.

The hemodynamic basis of exercise intolerance in tricuspid regurgitation

Affiliations

The hemodynamic basis of exercise intolerance in tricuspid regurgitation

Mads J Andersen et al. Circ Heart Fail. 2014 Nov.

Abstract

Background: Patients with severe tricuspid regurgitation (TR) frequently present with exertional fatigue and dyspnea, but the hemodynamic basis for exercise limitation in people with TR remains unclear.

Methods and results: Twelve subjects with normal left ventricular (LV) ejection fraction and grade ≥3 TR underwent high-fidelity invasive hemodynamic exercise testing with simultaneous expired gas analysis and were compared with 13 age- and sex-matched controls. At rest, TR subjects had lower pulmonary blood flow (3.6±0.4 versus 5.1±1.9 L/min; P=0.01), increased right atrial pressure (12±5 versus 4±1 mm Hg; P=0.0002), and higher pulmonary capillary wedge pressure (17±5 versus 9±3 mm Hg; P=0.0001). However, LV transmural pressure (pulmonary capillary wedge pressure-right atrial pressure), which reflects LV preload independent of right heart congestion and pericardial restraint, was similar in TR and controls (6±3 versus 4±2 mm Hg; P=0.3). With exercise, TR subjects displayed lower peak VO2 (10.3±2.8 versus 13.8±4.2 mL/min per kg; P=0.02), lower pulmonary blood flow (6.4±1.3 versus 10.3±3.3 L/min; P=0.001), and less increase in pulmonary blood flow relative to VO2 (+4.6±1.1vs +6.2±0.7; P=0.001). TR subjects displayed higher pulmonary capillary wedge pressure with exercise, but this was solely because of RA hypertension (27±9 versus 8±3 mm Hg; P<0.0001), because LV transmural pressure dropped with exercise in subjects with TR (-5±6 versus +3±3 mm Hg; P=0.0007), suggesting inadequate LV diastolic filling, despite high pulmonary capillary wedge pressure.

Conclusions: Impaired exercise capacity in people with severe TR is related to low cardiac output reserve relative to metabolic needs, coupled with elevated systemic and pulmonary venous pressures. Left heart pressures are elevated with exercise in subjects with TR, despite low LV preload, secondary to enhanced ventricular interaction.

Keywords: exercise; heart failure; hemodynamics.

PubMed Disclaimer

LinkOut - more resources