Greenland temperature response to climate forcing during the last deglaciation
- PMID: 25190795
- DOI: 10.1126/science.1254961
Greenland temperature response to climate forcing during the last deglaciation
Abstract
Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.
Copyright © 2014, American Association for the Advancement of Science.
Comment in
-
Climate. Greenland deglaciation puzzles.Science. 2014 Sep 5;345(6201):1116-7. doi: 10.1126/science.1257842. Science. 2014. PMID: 25190777 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous