Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 9:5:4805.
doi: 10.1038/ncomms5805.

Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase

Affiliations
Free article

Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase

Rajaram Venkatesan et al. Nat Commun. .
Free article

Abstract

Mitochondrial fatty acid synthesis (mtFAS) is essential for respiratory growth in yeast and mammalian embryonic survival. The human 3-ketoacyl-acyl carrier protein (ACP) reductase (KAR) of mtFAS is a heterotetrameric α2β2-assembly composed of 17β-hydroxysteroid dehydrogenase type-8 (HSD17B8, α-subunit) and carbonyl reductase type-4 (CBR4, β-subunit). Here we provide a structural explanation for the stability of the heterotetramer from the crystal structure with NAD(+) and NADP(+) bound to the HSD17B8 and CBR4 subunits, respectively, and show that the catalytic activity of the NADPH- and ACP-dependent CBR4 subunit is crucial for a functional HsKAR. Therefore, mtFAS is NADPH- and ACP dependent, employing the 3R-hydroxyacyl-ACP intermediate. HSD17B8 assists in the formation of the competent HsKAR assembly. The intrinsic NAD(+)- and CoA-dependent activity of the HSD17B8 subunit on the 3R-hydroxyacyl-CoA intermediates may indicate a role for this subunit in routing 3R-hydroxyacyl-CoA esters, potentially arising from the metabolism of unsaturated fatty acids, into the mitochondrial β-oxidation pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources