Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 9;9(9):e106499.
doi: 10.1371/journal.pone.0106499. eCollection 2014.

Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America

Affiliations

Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America

Danielle Fraser et al. PLoS One. .

Abstract

Spatial diversity patterns are thought to be driven by climate-mediated processes. However, temporal patterns of community composition remain poorly studied. We provide two complementary analyses of North American mammal diversity, using (i) a paleontological dataset (2077 localities with 2493 taxon occurrences) spanning 21 discrete subdivisions of the Cenozoic based on North American Land Mammal Ages (36 Ma--present), and (ii) climate space model predictions for 744 extant mammals under eight scenarios of future climate change. Spatial variation in fossil mammal community structure (β diversity) is highest at intermediate values of continental mean annual precipitation (MAP) estimated from paleosols (∼ 450 mm/year) and declines under both wetter and drier conditions, reflecting diversity patterns of modern mammals. Latitudinal gradients in community change (latitudinal turnover gradients, aka LTGs) increase in strength through the Cenozoic, but also show a cyclical pattern that is significantly explained by MAP. In general, LTGs are weakest when continental MAP is highest, similar to modern tropical ecosystems in which latitudinal diversity gradients are weak or undetectable. Projections under modeled climate change show no substantial change in β diversity or LTG strength for North American mammals. Our results suggest that similar climate-mediated mechanisms might drive spatial and temporal patterns of community composition in both fossil and extant mammals. We also provide empirical evidence that the ecological processes on which climate space models are based are insufficient for accurately forecasting long-term mammalian response to anthropogenic climate change and inclusion of historical parameters may be essential.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1
Mid to late Cenozoic trends of (A) δ18O (‰) from benthic foraminifera (Zachos et al. 2008), (B) mean annual precipitation estimated from paleosols (Retallack, 2007), (C) β diversity of North American mammal species measured using multivariate dispersion (average distance from the centroid), and (D) strength of latitudinal turnover gradients (LTGs) measured as gradient strength for North American fossil mammals. Black lines are raw values, gray lines are residuals from significant sampling bias predictors, and gray dashed lines are re-sampled. Standard errors for re-sampled data are too small to display.
Figure 2
Figure 2
Relationship of mean annual precipitation estimated from paleosols (Retallack, 2007) with North American fossil mammal (A) raw β diversity (R2 = 0.43), (B) residual beta diversity (R2 = 0.26) and (C) raw latitudinal turnover gradient (LTG) strength (R2 = 0.25), and (D) residual LTG strength (R2 = 0.37).
Figure 3
Figure 3
(A) β diversity (distance from centroid) and (B) latitudinal turnover gradients (LTG) strength of extant North American mammals under incomplete taxonomic sampling (removal of 25, 50, and 75% of species in sample) and body mass bias (removal of 25, 50, 75% of species smaller than 5 kg) and (C) β diversity (distance from centroid) and (D) latitudinal turnover gradients (LTG) strength of extant North American mammals under several International Panel on Climate Change scenarios (Special Reports on Emissions Scenarios).

References

    1. Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, et al. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105–3117.
    1. Qian H, Badgley C, Fox DL (2009) The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18: 111–122.
    1. Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, et al. (2002) Beta-diversity in tropical forest trees. Science 295: 666–669. - PubMed
    1. Baselga A, Lobo JM, Svenning JC, Aragón P, Araújo MB (2012) Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecology and Biogeography 21: 1106–1113.
    1. Engle VD, Summers JK (1999) Latitudinal gradients in benthic community composition in Western Atlantic estuaries. Journal of Biogeography 26: 1007–1023.

Publication types