Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 25;8(15):1383-9.
doi: 10.3969/j.issn.1673-5374.2013.15.005.

Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

Affiliations

Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

Changwei Song et al. Neural Regen Res. .

Abstract

Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

Keywords: animal behavior; brain-derived neurotrophic factor; central nervous system injury; gastrodin; grants-supported paper; microenvironment; neural regeneration; neuroregeneration; spinal cord injury; spinal structure; traditional Chinese medicine.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: None declared.

Figures

Figure 1
Figure 1
Effect of gastrodin on motor function in rats with spinal cord injury (SCI). There were 15 rats in each group; data were expressed as mean ± SD. aP < 0.05, bP < 0.01, vs. sham surgery group; cP < 0.05, vs. model group; dP < 0.05, vs. prior time points. (A) The inclined plane test. The large angle of the inclined plane represents good motor function. (B) Basso, Beattie and Bresnahan (BBB) score. The BBB scale ranges from 0 to 21. A score of 21 indicates normal movement, and a score of 0 represents no movement.
Figure 2
Figure 2
Effects of gastrodin on morphology of the spinal cord in rats with spinal cord injury (SCI; hematoxylin-eosin staining, light microscope, × 400). In the sham surgery group, normal neurons were visible in the spinal cord tissue. In the model group, obvious cell swelling was observed at 1 week after SCI. Cell debris increased, but cell swelling decreased over time. In the gastrodin group, cell swelling was visible in spinal cord tissue at 1 week. Cell debris increased at 2 weeks. Normal neural cells appeared and cell debris significantly decreased at 4 weeks.
Figure 3
Figure 3
Effects of gastrodin on brain-derived neurotrophic factor (BDNF) expression in the spinal cord tissue of rats with spinal cord injury (SCI) (immunohistochemistry, light microscope, × 400). Arrows indicate BDNF positive expression. In the sham surgery group, BDNF expression was not abundant. In the model group, BDNF expression increased at 1 week, decreased at 2 weeks, and became uneven at 4 weeks. In the gastrodin group, BDNF expression slightly increased at 1 week, peaked at 2 weeks, and decreased at 4 weeks.
Figure 4
Figure 4
Chemical structural formula of gastrodin.

References

    1. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44(9):523–529. - PubMed
    1. Matsumoto T, Cooper GM, Gharaibeh B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 2009;60(5):1390–1405. - PMC - PubMed
    1. Profyris C, Cheema SS, Zang D, et al. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis. 2004;15(3):415–436. - PubMed
    1. Diaz-Ruiz A, Alcaraz-Zubeldia M, Maldonado V, et al. Differential time-course of the increase of antioxidant thiol-defenses in the acute phase after spinal cord injury in rats. Neurosci Lett. 2009;452(1):56–59. - PubMed
    1. Li YM, Chen FP, Liu GQ. Studies on inhibitive effect of gastrodin on PC12 cell damage induced by glutamate and H2O2. Zhongguo Yaoke Daxue Xuebao. 2003;34(5):456–460.

LinkOut - more resources