Echocardiographic assessment of estimated right atrial pressure and size predicts mortality in pulmonary arterial hypertension
- PMID: 25211049
- PMCID: PMC4285078
- DOI: 10.1378/chest.13-3035
Echocardiographic assessment of estimated right atrial pressure and size predicts mortality in pulmonary arterial hypertension
Abstract
Background: Elevated mean right atrial pressure (RAP) measured by cardiac catheterization is an independent risk factor for mortality. Prior studies have demonstrated a modest correlation with invasive and noninvasive echocardiographic RAP, but the prognostic impact of estimated right atrial pressure (eRAP) has not been previously evaluated in patients with pulmonary arterial hypertension (PAH).
Methods: A retrospective analysis of 121 consecutive patients with PAH based on right-sided heart catheterization and echocardiography was performed. The eRAP was calculated by inferior vena cava diameter and collapse using 2005 and 2010 American Society of Echocardiography (ASE) definitions. Accuracy and correlation of eRAP to RAP was assessed. Kaplan-Meier survival analysis by eRAP, right atrial area, and Registry to Evaluate Early and Long-term PAH Disease Management (REVEAL Registry) risk criteria as well as univariate and multivariate analysis of echocardiographic findings was performed.
Results: Elevation of eRAP was associated with decreased survival time compared with lower eRAP (P < .001, relative risk = 7.94 for eRAP > 15 mm Hg vs eRAP ≤ 5 mm Hg). Univariate analysis of echocardiographic parameters including eRAP > 15 mm Hg, right atrial area > 18 cm², presence of pericardial effusion, right ventricular fractional area change < 35%, and at least moderate tricuspid regurgitation was predictive of poor survival. However, multivariate analysis revealed that eRAP > 15 mm Hg was the only echocardiographic risk factor that was predictive of mortality (hazard ratio = 2.28, P = .037).
Conclusions: Elevation of eRAP by echocardiography at baseline assessment was strongly associated with increased risk of death or transplant in patients with PAH. This measurement may represent an important prognostic component in the comprehensive echocardiographic evaluation of PAH.
Figures





References
-
- Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120(11):992-1007. - PubMed
-
- McLaughlin VV, Archer SL, Badesch DB, et al. ; ACCF/AHA. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc, and the Pulmonary Hypertension Association. [published correction appears in Circulation. 2009;120(2):e13]. Circulation. 2009;119(16):2250-2294. - PubMed
-
- Schannwell CM, Steiner S, Strauer BE. Diagnostics in pulmonary hypertension. J Physiol Pharmacol. 2007;58(suppl 5)(pt 2):591-602. - PubMed
-
- Benza RL, Gomberg-Maitland M, Miller DP, et al. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012;141(2):354-362. - PubMed
-
- D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343-349. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical