Room-temperature synthesis of iron-doped anatase TiO₂ for lithium-ion batteries and photocatalysis
- PMID: 25211065
- DOI: 10.1021/ic501067p
Room-temperature synthesis of iron-doped anatase TiO₂ for lithium-ion batteries and photocatalysis
Abstract
Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5-6 nm particle size and offering a high surface area of ca. 280 m(2)/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.
Similar articles
-
Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties.J Am Chem Soc. 2005 Aug 10;127(31):10982-90. doi: 10.1021/ja051240n. J Am Chem Soc. 2005. PMID: 16076205
-
High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.Nanoscale. 2014 Dec 21;6(24):14926-31. doi: 10.1039/c4nr04729j. Epub 2014 Nov 3. Nanoscale. 2014. PMID: 25363569
-
Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles.Chemosphere. 2006 Dec;65(11):1976-82. doi: 10.1016/j.chemosphere.2006.07.002. Epub 2006 Sep 1. Chemosphere. 2006. PMID: 16949637
-
Titanium Dioxide Nanoparticles Doped with Iron for Water Treatment via Photocatalysis: A Review.Nanomaterials (Basel). 2024 Jan 31;14(3):293. doi: 10.3390/nano14030293. Nanomaterials (Basel). 2024. PMID: 38334564 Free PMC article. Review.
-
Cationic Vacancies in Anatase (TiO2): Synthesis, Defect Characterization, and Ion-Intercalation Properties.Acc Chem Res. 2022 Mar 1;55(5):696-706. doi: 10.1021/acs.accounts.1c00728. Epub 2022 Feb 10. Acc Chem Res. 2022. PMID: 35142507 Review.
Cited by
-
Phase stability frustration on ultra-nanosized anatase TiO2.Sci Rep. 2015 Jun 4;5:10928. doi: 10.1038/srep10928. Sci Rep. 2015. PMID: 26042388 Free PMC article.
-
Vertically Aligned Binder-Free TiO2 Nanotube Arrays Doped with Fe, S and Fe-S for Li-ion Batteries.Nanomaterials (Basel). 2021 Oct 31;11(11):2924. doi: 10.3390/nano11112924. Nanomaterials (Basel). 2021. PMID: 34835688 Free PMC article.
-
Local vs Nonlocal States in FeTiO3 Probed with 1s2pRIXS: Implications for Photochemistry.Inorg Chem. 2017 Sep 18;56(18):10882-10892. doi: 10.1021/acs.inorgchem.7b00938. Epub 2017 Sep 5. Inorg Chem. 2017. PMID: 28872322 Free PMC article.
-
Improved Lithium Storage Performance of a TiO2 Anode Material Doped by Co.Materials (Basel). 2023 Feb 4;16(4):1325. doi: 10.3390/ma16041325. Materials (Basel). 2023. PMID: 36836955 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous