Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 28;16(40):22139-44.
doi: 10.1039/c4cp03221g. Epub 2014 Sep 12.

Activity of ZnO polar surfaces: an insight from surface energies

Affiliations

Activity of ZnO polar surfaces: an insight from surface energies

Chunguang Tang et al. Phys Chem Chem Phys. .

Abstract

The calculation of the accurate surface energies for (0001) surfaces of wurtzite ZnO is difficult because it is impossible to decouple the two inequivalent (0001)-Zn and (0001¯)-O surfaces. By using a heterojunction model we have transformed the uncertainty of the surface energies into that of interface energies which is much smaller than the former and hence estimated the surface energies to a high degree of accuracy. It is found that the oxygen terminated (0001¯)-O face of the wurtzite phase and (1¯1¯1¯O of the zinc blende phase are more stable than their Zn-terminated counterparts within the major temperature and oxygen partial pressure range accessible to experiment. The instability of Zn-terminated polar surfaces explains the experimentally observed high activity of these surfaces. The effects of native surface vacancies on the surface energies have also been discussed. These results provide insights into the modification of the surface stability and activity of ZnO nanoparticles.

PubMed Disclaimer

LinkOut - more resources