Radiolabeled probes targeting hypoxia-inducible factor-1-active tumor microenvironments
- PMID: 25215311
- PMCID: PMC4151590
- DOI: 10.1155/2014/165461
Radiolabeled probes targeting hypoxia-inducible factor-1-active tumor microenvironments
Abstract
Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α), which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of (18)F-FDG or (18)F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.
Figures



References
-
- Arbeit JM, Brown JM, Chao KSC, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology. 2006;82(10):699–757. - PubMed
-
- Rundqvist H, Johnson RS. Tumour oxygenation: Implications for breast cancer prognosis. Journal of Internal Medicine. 2013;274(2):105–112. - PubMed
-
- Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nature Reviews Clinical Oncology. 2012;9(12):674–687. - PubMed
-
- Yoo Y, Hayashi M, Christensen J, Huang LE. An essential role of the HIF-1α-c-Myc axis in malignant progression. Annals of the New York Academy of Sciences. 2009;1177:198–204. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources