Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 14;141(10):104201.
doi: 10.1063/1.4894224.

Towards bio-silicon interfaces: formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

Affiliations

Towards bio-silicon interfaces: formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

María J Retamal et al. J Chem Phys. .

Abstract

The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (~25 Å) and DPPC (~60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources