Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj)
- PMID: 25218934
- DOI: 10.1016/j.ceca.2014.08.010
Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj)
Abstract
Dynamic features of Ca(2+) interactions with transport and regulatory sites control the Ca(2+)-fluxes in mammalian Na(+)/Ca(2+)(NCX) exchangers bearing the Ca(2+)-binding regulatory domains on the cytosolic 5L6 loop. The crystal structure of Methanococcus jannaschii NCX (NCX_Mj) may serve as a template for studying ion-transport mechanisms since NCX_Mj does not contain the regulatory domains. The turnover rate of Na(+)/Ca(2+) exchange (kcat=0.5±0.2 s(-1)) in WT-NCX_Mj is 10(3)-10(4) times slower than in mammalian NCX. In NCX_Mj, the intrinsic equilibrium (Kint) for bidirectional Ca(2+) movements (defined as the ratio between the cytosolic and extracellular Km of Ca(2+)/Ca(2+) exchange) is asymmetric, Kint=0.15±0.5. Therefore, the Ca(2+) movement from the cytosol to the extracellular side is ∼7-times faster than in the opposite direction, thereby representing a stabilization of outward-facing (extracellular) access. This intrinsic asymmetry accounts for observed differences in the cytosolic and extracellulr Km values having a physiological relevance. Bidirectional Ca(2+) movements are also asymmetric in mammalian NCX. Thus, the stabilization of the outward-facing access along the transport cycle is a common feature among NCX orthologs despite huge differences in the ion-transport kinetics. Elongation of the cytosolic 5L6 loop in NCX_Mj by 8 or 14 residues accelerates the ion transport rates (kcat) ∼10 fold, while increasing the Kint values 100-250-fold (Kint=15-35). Therefore, 5L6 controls both the intrinsic equilibrium and rates of bidirectional Ca(2+) movements in NCX proteins. Some additional structural elements may shape the kinetic variances among phylogenetically distant NCX variants, although the intrinsic asymmetry (Kint) of bidirectional Ca(2+) movements seems to be comparable among evolutionary diverged NCX variants.
Keywords: Alternating access; Antiporter; Calcium; Functional asymmetry; NCX.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
