Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan;25(1):97-101.
doi: 10.1203/00006450-198901000-00021.

Mechanisms of endothelial cell ATP depletion after oxidant injury

Affiliations

Mechanisms of endothelial cell ATP depletion after oxidant injury

S P Andreoli. Pediatr Res. 1989 Jan.

Abstract

To investigate mechanisms of ATP depletion in human umbilical vein endothelial cells after oxidant injury, we studied the relationship between DNA damage, activation of the DNA-repairing enzyme poly ADP-ribose polymerase, NAD depletion, and ATP depletion. We found that oxidant stress generated with hypoxanthine-xanthine oxidase and glucose-glucose oxidase resulted in profound DNA damage. When endothelial cells were exposed to 25 and 50 mU/ml xanthine oxidase for 60 min, the percentage of double-stranded DNA was significantly reduced (p less than 0.05) to 15.2 +/- 1.2 and 4.6 +/- 0.5%, respectively, compared to 75.7 +/- 3.9% for control cells. When endothelial cells were exposed to 25 and 50 mU/ml glucose oxidase for 60 min, the percentage of double-stranded DNA was significantly (p less than 0.05) reduced to 35.0 +/- 1.5% and 9.9 +/- 7.7%, respectively, compared to 73.2 +/- 2.4% for control cells. ATP and NAD levels declined simultaneously with DNA damage. Because activation of the DNA-repairing enzyme poly ADP-ribose polymerase can consume NAD sufficient to interfere with ATP synthesis, we studied NAD and ATP levels after oxidant injury when ADP-ribose polymerase was inhibited with 3-aminobenzamide and nicotinamide. When poly ADP-ribose polymerase was inhibited, NAD levels remained normal, but ATP depletion was not prevented. We conclude that oxidant injury to human umbilical vein endothelial cells results in profound DNA damage and NAD and ATP depletion. NAD depletion results from activation of poly ADP-ribose polymerase, but this phenomenon is not the mechanism of ATP depletion in human umbilical vein endothelial cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types