Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul:62:306-24.
doi: 10.1016/j.compbiomed.2014.08.004. Epub 2014 Aug 21.

Mining approximate temporal functional dependencies with pure temporal grouping in clinical databases

Affiliations

Mining approximate temporal functional dependencies with pure temporal grouping in clinical databases

Carlo Combi et al. Comput Biol Med. 2015 Jul.

Abstract

Functional dependencies (FDs) typically represent associations over facts stored by a database, such as "patients with the same symptom get the same therapy." In more recent years, some extensions have been introduced to represent both temporal constraints (temporal functional dependencies - TFDs), as "for any given month, patients with the same symptom must have the same therapy, but their therapy may change from one month to the next one," and approximate properties (approximate functional dependencies - AFDs), as "patients with the same symptomgenerallyhave the same therapy." An AFD holds most of the facts stored by the database, enabling some data to deviate from the defined property: the percentage of data which violate the given property is user-defined. According to this scenario, in this paper we introduce approximate temporal functional dependencies (ATFDs) and use them to mine clinical data. Specifically, we considered the need for deriving new knowledge from psychiatric and pharmacovigilance data. ATFDs may be defined and measured either on temporal granules (e.g.grouping data by day, week, month, year) or on sliding windows (e.g.a fixed-length time interval which moves over the time axis): in this regard, we propose and discuss some specific and efficient data mining techniques for ATFDs. We also developed two running prototypes and showed the feasibility of our proposal by mining two real-world clinical data sets. The clinical interest of the dependencies derived considering the psychiatry and pharmacovigilance domains confirms the soundness and the usefulness of the proposed techniques.

Keywords: Approximate temporal functional dependency; Grouping; Pharmacovigilance; Psychiatric patients; Sliding window; Temporal granule.

PubMed Disclaimer

LinkOut - more resources