Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 27;15(8):438.
doi: 10.1186/s13059-014-0438-7.

Organizing knowledge to enable personalization of medicine in cancer

Organizing knowledge to enable personalization of medicine in cancer

Benjamin M Good et al. Genome Biol. .

Abstract

Interpretation of the clinical significance of genomic alterations remains the most severe bottleneck preventing the realization of personalized medicine in cancer. We propose a knowledge commons to facilitate collaborative contributions and open discussion of clinical decision-making based on genomic events in cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The interpretation bottleneck of personalized medicine. A typical cancer genomics workflow, from sequence to report, is illustrated. The upstream, relatively automated steps (shown by their light color here) involve (1) the production of millions of short sequence reads from a tumor sample; (2) alignment to the reference genome and application of event detection algorithms; (3) filtering, manual review and validation to identify high-quality events; and (4) annotation of events and application of functional prediction algorithms. These steps culminate in (5) the production of dozens to thousands of potential tumor-driving events that must be interpreted by a skilled analyst and synthesized in a report. Each event must be researched in the context of current literature (PubMed), drug-gene interaction databases (DGIdb), relevant clinical trials (ClinTrials) and known clinical actionability from sources such as My Cancer Genome (MCG). In our opinion, this attempt to infer clinical actionability represents the most severe bottleneck of the process. The analyst must find their way through the dark by extensive manual curation before handing off (6) a report for clinical evaluation and application by medical professionals.
Figure 2
Figure 2
An open, shared knowledge commons for N-of-one cancer researchers. (a) The closed model of knowledge management. Nearly all corporations and even most academic and non-profit groups tend by default to set up closed systems in which users of the information have little incentive or mechanism to feed information back into a community resource. (b) The open knowledge model. A knowledge commons enables the development of a diverse community of applications targeted at different user groups. All users have the incentive to feed information back to the commons and apps can provide mechanisms to do so.

References

    1. Cancer Genome Atlas Research Network. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–1120. doi: 10.1038/ng.2764. - DOI - PMC - PubMed
    1. Consortium ICG, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, et al. International network of cancer genome projects. Nature. 2010;464:993–998. doi: 10.1038/nature08987. - DOI - PMC - PubMed
    1. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 2014;15:256–278. doi: 10.1093/bib/bbs086. - DOI - PMC - PubMed
    1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–2139. doi: 10.1056/NEJMoa040938. - DOI - PubMed
    1. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500. doi: 10.1126/science.1099314. - DOI - PubMed

Publication types

LinkOut - more resources