Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 3;11(11):4118-29.
doi: 10.1021/mp5003009. Epub 2014 Sep 29.

Nitric oxide releasing d-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin

Affiliations

Nitric oxide releasing d-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin

Qingle Song et al. Mol Pharm. .

Abstract

Nitric oxide (NO) has attracted much attention for its antitumor activity and synergistic effects when codelivered with anticancer agents. However, due to its chemical instability and short half-life, delivering gaseous NO directly to tumors is still challenging. Herein, we synthesized a NO releasing polymer, nitrate functionalized d-α-tocopheryl polyethylene glycol succinate (TNO3). TNO3 was able to self-assemble into stable micelles in physiological conditions, accumulate in tumors, and release ∼90% of NO content in cancer cells for 96 h. It further exhibited significant cancer cell cytotoxicity and apoptosis compared with nitroglycerine (GTN). Notably, TNO3 could also serve as an enhancer for the common chemotherapeutic drug doxorubicin (DOX). Codelivering TNO3 with DOX to hepatocarcinoma HepG2 cancer cells strengthened the cellular uptake of DOX and enabled the synergistic effect between NO and DOX to induce higher cytotoxicity (∼6.25-fold lower IC50). Moreover, for DOX-based chemotherapy in tumor-bearing mice, coadministration with TNO3 significantly extended the blood circulation time of DOX (14.7-fold t1/2, 6.5-fold mean residence time (MRT), and 13.7-fold area under curve (AUC)) and enhanced its tumor accumulation and penetration, thus resulting in better antitumor efficacy. In summary, this new NO donor, TNO3, may provide a simple but effective strategy to enhance the therapeutic efficacy of chemotherapeutic drugs.

Keywords: TPGS; antitumor; doxorubicin; nitric oxide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources