Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan:119:848-855.
doi: 10.1016/j.chemosphere.2014.08.037. Epub 2014 Sep 19.

Sonochemical degradation of Coomassie Brilliant Blue: effect of frequency, power density, pH and various additives

Affiliations

Sonochemical degradation of Coomassie Brilliant Blue: effect of frequency, power density, pH and various additives

Manoj P Rayaroth et al. Chemosphere. 2015 Jan.

Abstract

Coomassie Brilliant Blue (CBB), discharged mainly from textile industries, is an identified water pollutant. Ultrasound initiated degradation of organic pollutants is one among the promising techniques and forms part of the Advanced Oxidation Processes (AOPs). Ultrasonic degradation of CBB under different experimental conditions has been investigated in the present work. The effect of frequency (200 kHz, 350 kHz, 620 kHz and 1 MHz) and power density (3.5 W mL(-1), 9.8 W mL(-1) and 19.6 W mL(-1)) on the degradation profile was evaluated. The optimum performance was obtained at 350 kHz and 19.6 W mL(-1). Similar to other sonolytic degradation of organic pollutants, maximum degradation of CBB was observed under acidic pH. The degradation profile indicated a pseudo-first order kinetics. The addition of ferrous ion (1×10(-4) M), hydrogen peroxide (1×10(-4) M), and peroxodisulphate (1×10(-4) M) had a positive effect on the degradation efficiency. The influence of certain important NOM like SDS and humic acid on the sonolytic degradation of CBB was also investigated. Both the compounds suppress the degradation efficiency. LC-Q-TOF-MS was used to identify the stable intermediate products. Nearly 13 transformed products were identified during 10min of sonication using the optimized operational parameters. This product profile demonstrated that most of the products are formed mainly by the OH radical attack. On the basis of these results, a degradation mechanism is proposed.

Keywords: Additives; Advanced Oxidation Process; Coomassie Brilliant Blue; End product analysis; Pollutants; Sonolysis.

PubMed Disclaimer

Publication types

LinkOut - more resources