Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2014 Nov;94(4):747-50.
doi: 10.1111/mmi.12797. Epub 2014 Sep 29.

Biofilm dispersal: deciding when it is better to travel

Affiliations
Free article
Comment

Biofilm dispersal: deciding when it is better to travel

Thomas K Wood. Mol Microbiol. 2014 Nov.
Free article

Abstract

Bacteria live predominantly in biofilms, and the internal signal cyclic diguanylate (c-di-GMP) is a universal signal that governs the formation and the dispersal of these communities. Pseudomonas aeruginosa is one of the most important reference systems for studying bacterial biofilms and contains numerous diguanylate cyclases (DGCs) for synthesizing c-di-GMP and phosphodiesterases (PDEs) for degrading c-di-GMP. However, few studies have discerned how cells in biofilms respond to their environment to regulate c-di-GMP concentrations through this sophisticated network of enzymes. Basu Roy and Sauer (2014) provide insights on how cells disperse in response to an increase in nutrient levels. Their results show that the inner membrane protein NicD is a DGC that controls dispersal by sensing nutrient levels: when glutamate concentrations are increased, NicD is dephosphorylated, which increases c-di-GMP levels and leads to phosphorylation and processing of dispersal regulator BdlA. Processing of BdlA leads to activation of PDE DipA, which results in a net reduction of c-di-GMP and biofilm dispersal. These results suggest biofilm dispersal relies on surprisingly dynamic c-di-GMP concentrations as a result of a sophisticated interaction between DGCs and PDEs.

PubMed Disclaimer

Comment on

Publication types

MeSH terms

Substances

LinkOut - more resources