Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 30;111(39):14076-81.
doi: 10.1073/pnas.1322107111. Epub 2014 Sep 15.

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales

Affiliations

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales

Thomas H Darrah et al. Proc Natl Acad Sci U S A. .

Abstract

Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

Keywords: groundwater contamination; isotopic tracers; methane; noble gas geochemistry; water quality.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1.
Fig. 1.
A diagram of seven scenarios that may account for the presence of elevated hydrocarbon gas levels in shallow aquifers (see discussion in text). The figure is a conceptualized stratigraphic section and is not drawn to scale. Additional scenarios (e.g., coal bed methane and natural-gas pipelines leaking into aquifers) are unlikely in our specific study areas (Figs. S2 and S3).
Fig. 2.
Fig. 2.
The ratios of CH4/36Ar [ratios are in units (cm3 STP/L)/(cm3 STP/L); A and C] and 4He/20Ne (B and D) vs. Cl of domestic groundwater wells. The samples were collected in the Marcellus (MSA) (Left) and Barnett (BSA) (Right) study areas at distances >1 km (triangles) and <1 km (circles) from unconventional drill sites (Tables S1 and S2). [CH4] is shown using grayscale intensity [0–60+ cm3 ([CH4]) STP/L]. The dashed lines in the MSA are the regressions of all points collected >1 km from drill sites. In the MSA, all samples >1 km from drill sites had [CH4] at or below saturation and showed significant correlations between Cl and CH4/36Ar (r2 = 0.72; P < 0.01) or 4He/20Ne (r2 = 0.59; P < 0.01) defined as the normal trend. For samples <1 km from drill sites, one subset was consistent with the “normal trend” (P = 0.31; Chow test), whereas the other anomalous subset had supersaturated [CH4] and high CH4/36Ar and 4He/20Ne, even at low [Cl] (green-rimmed circles in A and B). The natural Salt Spring in Montrose, PA, is shown as a square in all MSA figures, and samples targeted for microbial-sourced gases are distinguished by diamonds. In the BSA, 15 samples had [CH4] at or below saturation and significant correlations between Cl and CH4/36Ar (r2 = 0.59; P < 0.01) or 4He/20Ne (r2 = 0.48; P < 0.01) (dashed lines in C and D). Five samples, including two that changed between the first and second sampling periods (Fig. S4), had substantially higher CH4/36Ar and 4He/20Ne independent of [Cl]. The anomalous subset of samples from both locations with elevated CH4 that do not fall along the normal trend (>1 km) regression lines are consistent with a flux of gas-phase thermogenic hydrocarbon gas into shallow aquifers.
Fig. 3.
Fig. 3.
20Ne (Top), N2 (Middle), and CH4 (Bottom) vs. 36Ar in the MSA (Left) and BSA (Right) at distances >1 km (triangles) and <1 km (circles) from drill sites. All normal trend samples have 36Ar and N2 within 15% of the temperature-dependent ASW solubility line (cyan lines). Conversely, a subset of wells with elevated [CH4] <1 km from drill sites (green-rimmed circles) shows significantly stripped ASW gases (20Ne, 36Ar, N2), which result from extensive partitioning of dissolved ASW gases into a large volume of migrating gas-phase hydrocarbons (i.e., a fugitive gas). Note that domestic wells labeled previously elevated CH4 were vented to remove methane from the water before our sampling. Consistent with the MSA, most BSA samples (15 of 20) also have normal ASW composition, but five anomalous samples, including the two that displayed pronounced changes between the initial and later sampling events (Fig. S5), have significantly stripped ASW gas composition (green-rimmed circles).
Fig. 4.
Fig. 4.
4He/CH4 vs. 20Ne/36Ar (Upper Left) and 4He/CH4 vs. δ13C-CH4 (Lower Left) and C2H6+/CH4 vs. δ13C-CH4 (Upper Right) and 4He/40Ar* vs. 4He/20Ne (Lower Right) of produced gases and groundwater in the MSA (Left) and BSA (Right) at distances >1 km (triangles) and <1 km (circles) from drill sites. Normal trend groundwater samples in the MSA display 4He/CH4 and 20Ne/36Ar values that increase with [CH4] and that are significantly higher than Marcellus-produced gases. These data suggest natural geological migration of gas under relatively low Vgas/Vwater conditions (scenario 2). Samples <1 km from drill sites with evidence for fugitive gas migration (green-rimmed circles) plot along a trend between Marcellus (black box) and Upper Devonian-produced gases (pink hatched box) consistent with Scenarios 4 (annulus) or 5 (production casing) (B). A cluster of groundwaters near a gas well that experienced an underground blowout (circled in A and B) displays significant stripping and enrichments in both 4He/CH4 and 20Ne/36Ar, consistent with modeled solubility fractionation vectors (red dashed lines) for gas migration through the water-saturated crust (e.g., along faults or fractures) (scenario 6), but likely results from a well packer failure at depth (scenario 5). The Strawn- and Barnett-produced gases include data reported in ref. and collected as part of the present study (Table S3). The molecular ratio of aliphatic hydrocarbons (C2H6+/CH4) (C) and noble gases (4He/40Ar* and 4He/20Ne) (D) in samples with evidence of fugitive gas contamination (green-rimmed circles) are significantly greater than other natural groundwaters in the area. The similarity between the C2H6+/CH4, 4He/40Ar*, and 4He/20Ne composition of the five impacted wells, including the two that changed between the first and second samplings (Fig. S6), and Strawn-produced gases, suggests an intermediate depth Strawn gas (scenario 4) as the most likely cause for the fugitive gas contamination observed in Texas.

References

    1. Tour JM, Kittrell C, Colvin VL. Green carbon as a bridge to renewable energy. Nat Mater. 2010;9(11):871–874. - PubMed
    1. Kerr RA. Natural gas from shale bursts onto the scene. Science. 2010;328(5986):1624–1626. - PubMed
    1. US Energy Information Administration . Annual Energy Outlook 2014. Washington, DC: USEIA; 2013.
    1. Ellsworth WL. Injection-induced earthquakes. Science. 2013;341(6142):1225942. - PubMed
    1. Petron G, et al. Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. J Geophys Res D Atmospheres. 2012;117(D4):D04304.

Publication types